deepcave.utils.multi_objective_importance¶
# Multi-Objective importances
This module provides utilities for calculating multi-objective importances.
Functions
|
Calculate the weighting for the weighted importance using the points on the pareto-front. |
|
Find the pareto-efficient points. |
- deepcave.utils.multi_objective_importance.get_weightings(objectives_normed, df)[source]¶
Calculate the weighting for the weighted importance using the points on the pareto-front.
- Parameters:
objectives_normed (List[str]) – The normalized objective names as a list of strings.
df (pandas.dataframe) – The dataframe containing the encoded data.
- Returns:
weightings – The weightings.
- Return type:
numpy.ndarray
- deepcave.utils.multi_objective_importance.is_pareto_efficient(costs)[source]¶
Find the pareto-efficient points.
- Parameters:
costs (numpy.ndarray) – An (n_points, n_costs) array.
- Returns:
is_efficient – A (n_points, ) boolean array, indicating whether each point is pareto-efficient.
- Return type:
numpy.ndarray