Source code for deepcave.utils.multi_objective_importance

# Copyright 2021-2024 The DeepCAVE Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#  noqa: D400
"""
# Multi-Objective importances

This module provides utilities for calculating multi-objective importances.
"""

from typing import List

import numpy as np
import pandas as pd


[docs] def is_pareto_efficient(costs: np.ndarray) -> np.ndarray: """ Find the pareto-efficient points. Parameters ---------- costs : numpy.ndarray An (n_points, n_costs) array. Returns ------- is_efficient : numpy.ndarray A (n_points, ) boolean array, indicating whether each point is pareto-efficient. """ is_efficient = np.ones(costs.shape[0], dtype=bool) for i, c in enumerate(costs): is_efficient[i] = np.all(np.any(costs[:i] > c, axis=1)) and np.all( np.any(costs[i + 1 :] > c, axis=1) ) return is_efficient
[docs] def get_weightings(objectives_normed: List[str], df: pd.DataFrame) -> np.ndarray: """ Calculate the weighting for the weighted importance using the points on the pareto-front. Parameters ---------- objectives_normed : List[str] The normalized objective names as a list of strings. df : pandas.dataframe The dataframe containing the encoded data. Returns ------- weightings : numpy.ndarray The weightings. """ optimized = is_pareto_efficient(df[objectives_normed].to_numpy()) return ( df[optimized][objectives_normed].T.apply(lambda values: values / values.sum()).T.to_numpy() )