deepcave.evaluators.epm.random_forest¶
# RandomForest
This module can be used for training and using a Random Forest Regression model.
A pyrfr wrapper is used for simplification.
- ## Classes
RandomForest: A random forest wrapper for pyrfr.
- ## Constants
VERY_SMALL_NUMBER : float PYRFR_MAPPING : Dict[str, str]
Classes
|
A random forest wrapper for pyrfr. |
- class deepcave.evaluators.epm.random_forest.RandomForest(configspace, n_trees=16, ratio_features=0.8333333333333334, min_samples_split=3, min_samples_leaf=3, max_depth=1048576, max_nodes=1048576, eps_purity=1e-08, bootstrapping=True, instance_features=None, pca_components=2, log_y=False, seed=0)[source]¶
Bases:
object
A random forest wrapper for pyrfr.
This is handy because only the configuration space needs to be passed. and have a working version without specifying e.g. types and bounds.
Note
This wrapper also supports instances.
- csConfigurationSpace
The configuration space.
- log_ybool
Whether y should be treated as a logarithmic transformation.
- seedint
The seed. If not provided, it is random.
- typesList[int]
The types of the Hyperparameters.
- boundsList[Tuple[float, float]]
The bounds of the Hyperparameters.
- n_paramsint
The number of Hyperparameters in the configuration space.
- n_featuresint
The number of features.
- pca_componentsint
The number of components to keep for the principal component analysis (PCA).
- pcaPCA
The principal component analysis (PCA) object.
- scalerMinMaxScaler
A MinMaxScaler to scale the features.
- instance_featuresndarray
The instance features.
- get_leaf_values(x)[source]¶
Get the leaf values of the model.
- Parameters:
x (np.ndarray) – Input data array.
- Returns:
The leaf values of the model.
- Return type:
regression.binary_rss_forest
- predict(X)[source]¶
Predict means and variances for a given X.
- Parameters:
X (np.ndarray [n_samples, n_features (config + instance features)]) – Training samples.
- Return type:
Tuple
[ndarray
,ndarray
]- Returns:
means (np.ndarray [n_samples, n_objectives]) – Predictive mean.
vars (np.ndarray [n_samples, n_objectives] or [n_samples, n_samples]) – Predictive variance or standard deviation.
- predict_marginalized(X)[source]¶
Predict mean and variance marginalized over all instances.
Return the predictive mean and variance marginalized over all instances for a set of configurations.
- Parameters:
X (np.ndarray) – [n_samples, n_features (config)]
- Return type:
Tuple
[ndarray
,ndarray
]- Returns:
means (np.ndarray of shape = [n_samples, 1]) – Predictive mean
vars (np.ndarray of shape = [n_samples, 1]) – Predictive variance
- train(X, Y)[source]¶
Train the random forest on X and Y.
Transform X if principal component analysis (PCA) is applied. Afterwards, _train is called.
- Parameters:
X (np.ndarray [n_samples, n_features (config + instance features)]) – Input data points.
Y (np.ndarray [n_samples, n_objectives]) – Target values. n_objectives must match the number of target names specified in the constructor.
- Return type:
None