deepcave.evaluators.epm.fanova_forest¶
# FanovaForest
The module provides utilities for creating a fANOVA forest.
It includes a FanovaForest wrapper for pyrfr. fANOVA can be used for analyzing the importances of Hyperparameters.
- ## Classes
 FanovaForest: A fANOVA forest wrapper for pyrfr.
Classes
  | 
A fANOVA forest wrapper for pyrfr.  | 
- class deepcave.evaluators.epm.fanova_forest.FanovaForest(configspace, n_trees=10, ratio_features=1.0, min_samples_split=0, min_samples_leaf=0, max_depth=64, max_nodes=1048576, eps_purity=1e-08, bootstrapping=True, instance_features=None, pca_components=2, cutoffs=(-inf, inf), seed=0)[source]¶
 Bases:
RandomForestA fANOVA forest wrapper for pyrfr.
Properties¶
- cutoffsTuple[float, float]
 The cutoffs of the model.
- percentilesNDArray[floating]
 The percentiles of the data points Y.
- all_midpointsList
 All midpoints tree wise for the whole forest.
- all_sizesList
 All interval sizes tree wise for the whole forest.
- boundsList[Tuple[float, float]
 Stores feature bounds.
- trees_total_variancesList
 The total variances of the trees.
- trees_total_varianceAny
 The total variance of a tree.
- trees_variance_fractionsDict
 The variance fractions of the trees.
- V_U_totalDict[Tuple[int, …], List[Any]]
 Store variance-related information across all trees.
- V_U_individualDict[Tuple[int, …], List[Any]]
 Store variance-related information for individual subsets.
- n_paramsint
 The number of Hyperparameters to sample.
- compute_marginals(hp_ids, depth=1)[source]¶
 Return the marginal of selected Hyperparameters.
- Parameters:
 hp_ids (Union[List[int], Tuple[int, ...]]) – Contains the indices of the configspace for the selected Hyperparameters (starts with 0).
depth (int) – The depth of the marginalization. Default value is 1.
- Return type:
 Tuple[Dict[Tuple[int,...],List[Any]],Dict[Tuple[int,...],List[Any]]]- Returns:
 Tuple[Dict[Tuple[int, …], List[Any]],
Dict[Tuple[int, …], List[Any]], – The marginal of selected Hyperparameters.