deepcave.evaluators.epm.fanova_forest¶
# FanovaForest
The module provides utilities for creating a fANOVA forest.
It includes a FanovaForest wrapper for pyrfr. fANOVA can be used for analyzing the importances of Hyperparameters.
- ## Classes
FanovaForest: A fANOVA forest wrapper for pyrfr.
Classes
|
A fANOVA forest wrapper for pyrfr. |
- class deepcave.evaluators.epm.fanova_forest.FanovaForest(configspace, n_trees=10, ratio_features=1.0, min_samples_split=0, min_samples_leaf=0, max_depth=64, max_nodes=1048576, eps_purity=1e-08, bootstrapping=True, instance_features=None, pca_components=2, cutoffs=(-inf, inf), seed=0)[source]¶
Bases:
RandomForest
A fANOVA forest wrapper for pyrfr.
Properties¶
- cutoffsTuple[float, float]
The cutoffs of the model.
- percentilesNDArray[floating]
The percentiles of the data points Y.
- all_midpointsList
All midpoints tree wise for the whole forest.
- all_sizesList
All interval sizes tree wise for the whole forest.
- boundsList[Tuple[float, float]
Stores feature bounds.
- trees_total_variancesList
The total variances of the trees.
- trees_total_varianceAny
The total variance of a tree.
- trees_variance_fractionsDict
The variance fractions of the trees.
- V_U_totalDict[Tuple[int, …], List[Any]]
Store variance-related information across all trees.
- V_U_individualDict[Tuple[int, …], List[Any]]
Store variance-related information for individual subsets.
- n_paramsint
The number of Hyperparameters to sample.
- compute_marginals(hp_ids, depth=1)[source]¶
Return the marginal of selected Hyperparameters.
- Parameters:
hp_ids (Union[List[int], Tuple[int, ...]]) – Contains the indices of the configspace for the selected Hyperparameters (starts with 0).
depth (int) – The depth of the marginalization. Default value is 1.
- Return type:
Tuple
[Dict
[Tuple
[int
,...
],List
[Any
]],Dict
[Tuple
[int
,...
],List
[Any
]]]- Returns:
Tuple[Dict[Tuple[int, …], List[Any]],
Dict[Tuple[int, …], List[Any]], – The marginal of selected Hyperparameters.