Source code for deepcave.plugins.hyperparameter.parallel_coordinates

# Copyright 2021-2024 The DeepCAVE Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#  noqa: D400

"""
# ParallelCoordinates

This module provides utilities for visualizing the parallel coordinates.

## Classes
    - ParallelCoordinates : Can be used for visualizing the parallel coordinates.
"""

from typing import Any, Callable, Dict, List

from collections import defaultdict

import dash_bootstrap_components as dbc
import numpy as np
import pandas as pd
import plotly.graph_objs as go
from dash import dcc, html
from dash.exceptions import PreventUpdate

from deepcave import config
from deepcave.constants import VALUE_RANGE
from deepcave.evaluators.fanova import fANOVA
from deepcave.plugins.static import StaticPlugin
from deepcave.utils.compression import deserialize, serialize
from deepcave.utils.layout import get_checklist_options, get_select_options, help_button
from deepcave.utils.logs import get_logger
from deepcave.utils.styled_plotty import get_hyperparameter_ticks, save_image

logger = get_logger(__name__)


[docs] class ParallelCoordinates(StaticPlugin): """Can be used for visualizing the parallel coordinates.""" id = "parallel_coordinates" name = "Parallel Coordinates" icon = "far fa-map" activate_run_selection = True help = "docs/plugins/parallel_coordinates.rst"
[docs] @staticmethod def get_input_layout(register: Callable) -> List[Any]: """ Get the layout for the input block. Parameters ---------- register : Callable Method to regsiter (user) variables. The register_input function is located in the Plugin superclass. Returns ------- List[Any] The layouts for the input block. """ return [ dbc.Row( [ dbc.Col( [ dbc.Label("Objective"), dbc.Select( id=register("objective_id", ["value", "options"], type=int), placeholder="Select objective ...", ), ], md=6, ), dbc.Col( [ dbc.Label("Budget"), help_button( "Budget refers to the multi-fidelity budget. " "Combined budget means that the trial on the highest evaluated" " budget is used. \n " "Note: Selecting combined budget might be misleading if a time" " objective is used. Often, higher budget take longer to evaluate," " which might negatively influence the results." ), dbc.Select( id=register("budget_id", ["value", "options"], type=int), placeholder="Select budget ...", ), ], md=6, ), ], className="mb-3", ), html.Div( [ dbc.Label("Show Important Hyperparameters"), help_button( "Order hyperparameters according to their fANOVA importance. The more " "right a hyperparameter stands, the more important it is. However, " "activating this option might take longer." ), dbc.Select( id=register("show_important_only", ["value", "options"]), placeholder="Select ...", ), ] ), ]
[docs] @staticmethod def get_filter_layout(register: Callable) -> List[Any]: """ Get the layout for the filter block. Parameters ---------- register : Callable Method to register (user) variables. The register_input function is located in the Plugin superclass. Returns ------- List[Any] The layouts for the filter block. """ return [ dbc.Row( [ dbc.Col( [ dbc.Label("Limit Hyperparameters"), help_button( "Shows either the n most important hyperparameters (if show " "important hyperparameters is true) or the first n selected " "hyperparameters." ), dbc.Input(id=register("n_hps", "value"), type="number"), ], md=6, ), dbc.Col( [ dbc.Label("Show Unsuccessful Configurations"), help_button("Whether to show all configurations or only failed ones."), dbc.Select( id=register("show_unsuccessful", ["value", "options"]), placeholder="Select ...", ), ], md=6, ), ], ), html.Div( [ dbc.Label("Hyperparameters"), dbc.Checklist( id=register("hyperparameter_names", ["value", "options"]), inline=True ), ], className="mt-3", id=register("hide_hps", ["hidden"]), ), ]
[docs] def load_inputs(self) -> Dict[str, Dict[str, Any]]: """ Load the content for the defined inputs in 'get_input_layout' and 'get_filter_layout'. This method is necessary to pre-load contents for the inputs. So, if the plugin is called for the first time or there are no results in the cache, the plugin gets its content from this method. Returns ------- Dict[str, Dict[str, Any]] Content to be filled. """ return { "show_important_only": {"options": get_select_options(binary=True), "value": "true"}, "show_unsuccessful": {"options": get_select_options(binary=True), "value": "false"}, "n_hps": {"value": 0}, "hyperparameter_names": {"options": get_checklist_options(), "value": []}, "hide_hps": {"hidden": True}, }
[docs] def load_dependency_inputs(self, run, _, inputs) -> Dict[str, Any]: # type: ignore """ Work like 'load_inputs' but called after inputs have changed. Note ---- Only the changes have to be returned. The returned dictionary will be merged with the inputs. Parameters ---------- run The selected run. inputs Current content of the inputs. Returns ------- Dict[str, Any] The dictionary with the changes. """ # Prepare objectives objective_names = run.get_objective_names() objective_ids = run.get_objective_ids() objective_options = get_select_options(objective_names, objective_ids) objective_value = inputs["objective_id"]["value"] # Prepare budgets budgets = run.get_budgets(human=True) budget_ids = run.get_budget_ids() budget_options = get_checklist_options(budgets, budget_ids) budget_value = inputs["budget_id"]["value"] # Prepare others n_hps = inputs["n_hps"]["value"] hp_names = list(run.configspace.keys()) if inputs["show_important_only"]["value"] == "true": hp_options = [] hp_value = inputs["hyperparameter_names"]["value"] hidden = True else: hp_options = get_select_options(hp_names) values = inputs["hyperparameter_names"]["value"] if len(values) == 0: values = hp_names hp_value = values hidden = False if objective_value is None: objective_value = objective_ids[0] budget_value = budget_ids[-1] hp_value = hp_names if n_hps == 0: n_hps = len(hp_names) return { "objective_id": { "options": objective_options, "value": objective_value, }, "budget_id": { "options": budget_options, "value": budget_value, }, "hyperparameter_names": { "options": hp_options, "value": hp_value, }, "n_hps": {"value": n_hps}, "hide_hps": {"hidden": hidden}, }
[docs] @staticmethod def process(run, inputs) -> Dict[str, Any]: # type: ignore """ Return raw data based on a run and input data. Warning ------- The returned data must be JSON serializable. Note ---- The passed inputs are cleaned and therefore differs compared to 'load_inputs' or 'load_dependency_inputs'. Please see '_clean_inputs' for more information. Parameters ---------- run : AbstractRun The run to process. inputs : Dict[str, Any] The input data. Returns ------- Dict[str, Any] The serialized dictionary. """ budget = run.get_budget(inputs["budget_id"]) objective = run.get_objective(inputs["objective_id"]) df = run.get_encoded_data(objective, budget) df = df.groupby(df.columns.drop(objective.name).to_list(), as_index=False).mean() df = serialize(df) result: Dict[str, Any] = {"df": df} if inputs["show_important_only"]: # Let's run a quick fANOVA here evaluator = fANOVA(run) evaluator.calculate(objective, budget, n_trees=10, seed=0) importances_dict = evaluator.get_importances() importances = {u: v[0] for u, v in importances_dict.items()} important_hp_names = sorted( importances, key=lambda key: importances[key], reverse=False ) result["important_hp_names"] = important_hp_names return result
[docs] @staticmethod def get_output_layout(register: Callable) -> dcc.Graph: """ Get the layout for the output block. Parameters ---------- register : Callable Method to register outputs. The register_output function is located in the Plugin superclass. Returns ------- dcc.Graph The layouts for the output block. """ return dcc.Graph( register("graph", "figure"), style={"height": config.FIGURE_HEIGHT}, config={"toImageButtonOptions": {"scale": config.FIGURE_DOWNLOAD_SCALE}}, )
[docs] @staticmethod def load_outputs(run, inputs, outputs) -> go.Figure: # type: ignore """ Read in the raw data and prepare them for the layout. Note ---- The passed inputs are cleaned and therefore differs compared to 'load_inputs' or 'load_dependency_inputs'. Please see '_clean_inputs' for more information. Parameters ---------- run The selected run. inputs The inputs and filter values from the user. outputs Raw output from the run. Returns ------- go.Figure The output figure. """ objective = run.get_objective(inputs["objective_id"]) objective_name = objective.name show_important_only = inputs["show_important_only"] show_unsuccessful = inputs["show_unsuccessful"] n_hps = inputs["n_hps"] if n_hps == "" or n_hps is None: raise PreventUpdate else: n_hps = int(n_hps) if show_important_only: hp_names = outputs["important_hp_names"] # cut off from the left side to cut off the least important hyperparameters first show_n_hps = len(hp_names) - n_hps hp_names = hp_names[show_n_hps:] else: hp_names = inputs["hyperparameter_names"] hp_names = hp_names[n_hps:] df = outputs["df"] df = deserialize(df, dtype=pd.DataFrame) objective_values = [] for value in df[objective_name].values: b = np.isnan(value) if not show_unsuccessful: b = not b if b: objective_values += [value] data: defaultdict = defaultdict(dict) for hp_name in hp_names: values = [] for hp_v, objective_v in zip(df[hp_name].values, df[objective_name].values): b = np.isnan(objective_v) if not show_unsuccessful: b = not b if b: values += [hp_v] data[hp_name]["values"] = values data[hp_name]["label"] = hp_name data[hp_name]["range"] = VALUE_RANGE hp = run.configspace[hp_name] tickvals, ticktext = get_hyperparameter_ticks(hp, ticks=4, include_nan=True) data[hp_name]["tickvals"] = tickvals data[hp_name]["ticktext"] = ticktext if show_unsuccessful: line = dict() else: data[objective_name]["values"] = objective_values data[objective_name]["label"] = objective_name line = dict( color=data[objective_name]["values"], showscale=True, colorscale="aggrnyl", ) figure = go.Figure( data=go.Parcoords( line=line, dimensions=list([d for d in data.values()]), labelangle=45, ), layout=dict( margin=dict(t=150, b=50, l=100, r=0), font=dict(size=config.FIGURE_FONT_SIZE), ), ) save_image(figure, "parallel_coordinates.pdf") return figure