Api
API for the neps package.
run
#
run(
evaluate_pipeline: (
Callable[..., EvaluatePipelineReturn] | str
),
pipeline_space: (
Mapping[str, dict | str | int | float | Parameter]
| SearchSpace
| ConfigurationSpace
),
*,
root_directory: str | Path = "neps_results",
overwrite_working_directory: bool = False,
post_run_summary: bool = True,
max_evaluations_total: int | None = None,
max_evaluations_per_run: int | None = None,
continue_until_max_evaluation_completed: bool = False,
max_cost_total: int | float | None = None,
ignore_errors: bool = False,
objective_value_on_error: float | None = None,
cost_value_on_error: float | None = None,
sample_batch_size: int | None = None,
optimizer: (
OptimizerChoice
| Mapping[str, Any]
| tuple[OptimizerChoice, Mapping[str, Any]]
| Callable[
Concatenate[SearchSpace, ...], AskFunction
]
| CustomOptimizer
| Literal["auto"]
) = "auto"
) -> None
Run the optimization.
Parallelization
To run with multiple processes or machines, execute the script that
calls neps.run()
multiple times. They will keep in sync using
the file-sytem, requiring that root_directory
be shared between them.
import neps
import logging
logging.basicConfig(level=logging.INFO)
def evaluate_pipeline(some_parameter: float) -> float:
validation_error = -some_parameter
return validation_error
pipeline_space = dict(some_parameter=neps.Float(lower=0, upper=1))
neps.run(
evaluate_pipeline=evaluate_pipeline,
pipeline_space={
"some_parameter": (0.0, 1.0), # float
"another_parameter": (0, 10), # integer
"optimizer": ["sgd", "adam"], # categorical
"epoch": neps.Integer( # fidelity integer
lower=1,
upper=100,
is_fidelity=True
),
"learning_rate": neps.Float( # log spaced float
lower=1e-5,
uperr=1,
log=True
),
"alpha": neps.Float( # float with a prior
lower=0.1,
upper=1.0,
prior=0.99,
prior_confidence="high",
)
},
root_directory="usage_example",
max_evaluations_total=5,
)
PARAMETER | DESCRIPTION | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
evaluate_pipeline
|
The objective function to minimize. This will be called
with a configuration from the The function should return one of the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
pipeline_space
|
The search space to minimize over. This most direct way to specify the search space is as follows:
You can also directly instantiate any of the parameters
defined by Some important properties you can set on parameters are:
Yaml support To support spaces defined in yaml, you may also define the parameters as dictionarys, e.g.,
ConfigSpace support You may also use a
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
root_directory
|
The directory to save progress to. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
overwrite_working_directory
|
If true, delete the working directory at the start of the run. This is, e.g., useful when debugging a evaluate_pipeline function.
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
post_run_summary
|
If True, creates a csv file after each worker is done, holding summary information about the configs and results.
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
max_evaluations_per_run
|
Number of evaluations this specific call should do.
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
max_evaluations_total
|
Number of evaluations after which to terminate.
This is shared between all workers operating in the same
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
continue_until_max_evaluation_completed
|
If true, only stop after max_evaluations_total have been completed. This is only relevant in the parallel setting.
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
max_cost_total
|
No new evaluations will start when this cost is exceeded. Requires
returning a cost in the evaluate_pipeline function, e.g.,
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ignore_errors
|
Ignore hyperparameter settings that threw an error and do not raise an error. Error configs still count towards max_evaluations_total.
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
objective_value_on_error
|
Setting this and cost_value_on_error to any float will supress any error and will use given objective_to_minimize value instead. default: None
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
cost_value_on_error
|
Setting this and objective_value_on_error to any float will supress any error and will use given cost value instead. default: None
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
sample_batch_size
|
The number of samples to ask for in a single call to the optimizer. When to use this?This is only useful in scenarios where you have many workers available, and the optimizers sample time prevents full worker utilization, as can happen with Bayesian optimizers. In this case, the currently active worker will first
check if there are any new configurations to evaluate,
and if not, generate We advise to only use this if:
Downsides of batchingThe primary downside of batched optimization is that
the next
TYPE:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
optimizer
|
Which optimizer to use. Not sure which to use? Leave this at Available optimizers
With any optimizer choice, you also may provide some additional parameters to the optimizers. We do not recommend this unless you are familiar with the optimizer you are using. You may also specify an optimizer as a dictionary for supporting reading in serialized yaml formats: Own optimzierLastly, you may also provide your own optimizer which must satisfy
the
This is mainly meant for internal development but allows you to use the NePS runtime to run your optimizer.
TYPE:
|
Source code in neps\api.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
|