cave.analyzer.feature_analysis.feature_analysis module¶
-
class
cave.analyzer.feature_analysis.feature_analysis.
FeatureAnalysis
(output_dn: str, scenario, feat_names, feat_importance=None)[source]¶ Bases:
object
From: https://github.com/mlindauer/asapy
- Parameters
output_dn (str) – output directory name
scenario (Scenario) – scenario for features
feat_names (list[str]) – names of features as list
feat_importance (dict[str] -> float) – maps names to importance
-
cluster_instances
()[source]¶ Use pca to reduce feature dimensions to 2 and cluster instances using k-means afterwards