smac.epm.random_forest.rfr_imputator

Classes

RFRImputator(rng, cutoff, threshold, model)

Imputor using pyrfr's Random Forest regressor.

class smac.epm.random_forest.rfr_imputator.RFRImputator(rng, cutoff, threshold, model, change_threshold=0.01, max_iter=2)[source]

Bases: smac.epm.base_imputor.BaseImputor

Imputor using pyrfr’s Random Forest regressor.

Note: Sets var_threshold as the lower bound on the variance for the predictions of the random forest

Parameters
  • rng (np.random.RandomState) – Will be used to draw a seed (currently not used)

  • cutoff (float) – Cutoff value for this scenario (upper runnning time limit)

  • threshold (float) – Highest possible values (e.g. cutoff * parX).

  • model (BaseEPM) – Predictive model (i.e. RandomForestWithInstances)

  • change_threshold (float) – Stop imputation if change is less than this.

  • max_iter (int) – Maximum number of imputation iterations.

logger
Type

logging.Logger

max_iter
Type

int

change_threshold
Type

float

cutoff
Type

float

threshold
Type

float

seed

Created by drawing random int from rng

Type

int

model

Predictive model (i.e. RandomForestWithInstances)

Type

BaseEPM

var_threshold
Type

float

impute(censored_X, censored_y, uncensored_X, uncensored_y)[source]

Imputes censored runs and returns new y values.

Parameters
  • censored_X (np.ndarray [N, M]) – Feature array of all censored runs.

  • censored_y (np.ndarray [N, 1]) – Target values for all runs censored runs.

  • uncensored_X (np.ndarray [N, M]) – Feature array of all non-censored runs.

  • uncensored_y (np.ndarray [N, 1]) – Target values for all non-censored runs.

Returns

imputed_y – Same shape as censored_y [N, 1]

Return type

np.ndarray