smac.epm.utils

Functions

check_subspace_points(X[, cont_dims, ...])

Check which points are placed inside a given subspace

get_rng([rng, run_id, logger])

Initialize random number generator and set run_id.

get_types(config_space[, instance_features])

Return the types of the hyperparameters and the bounds of the hyperparameters and instance features.

smac.epm.utils.check_subspace_points(X, cont_dims=[], cat_dims=[], bounds_cont=None, bounds_cat=None, expand_bound=False)[source]

Check which points are placed inside a given subspace

Parameters
  • X (Optional[np.ndarray(N,D)],) – points to be checked, where D = D_cont + D_cat

  • cont_dims (Union[np.ndarray(D_cont), List]) – which dimensions represent continuous hyperparameters

  • cat_dims (Union[np.ndarray(D_cat), List]) – which dimensions represent categorical hyperparameters

  • bounds_cont (optional[List[Tuple]]) – subspaces bounds of categorical hyperparameters, its length is the number of continuous hyperparameters

  • bounds_cat (Optional[List[Tuple]]) – subspaces bounds of continuous hyperparameters, its length is the number of categorical hyperparameters

  • expand_bound (bool) – if the bound needs to be expanded to contain more points rather than the points inside the subregion

Returns

indices_in_ss – indices of data that included in subspaces

Return type

np.ndarray(N)

smac.epm.utils.get_rng(rng=None, run_id=None, logger=None)[source]

Initialize random number generator and set run_id.

  • If rng and run_id are None, initialize a new generator and sample a run_id

  • If rng is None and a run_id is given, use the run_id to initialize the rng

  • If rng is an int, a RandomState object is created from that.

  • If rng is RandomState, return it

  • If only run_id is None, a run_id is sampled from the random state.

Parameters
  • rng (np.random.RandomState|int|None) –

  • run_id (int, optional) –

  • logger (logging.Logger, optional) –

Return type

Tuple[int, RandomState]

Returns

  • int

  • np.random.RandomState

smac.epm.utils.get_types(config_space, instance_features=None)[source]

Return the types of the hyperparameters and the bounds of the hyperparameters and instance features.

Return type

Tuple[List[int], List[Tuple[float, float]]]