CARL Brax Environments

In CARL all Brax locomotion environments are included. As context features there are external features like gravity or friction or internal features like joint strength or torso mass.

CARL Ant Environment

Screenshot of CARLAnt

Here the agent needs to learn how to control a four-legged ant in order to run (quickly) into a given direction.

Defaults and Bounds

Context Feature

Default

Bounds

joint_stiffness

5000.0

(1, inf, <class ‘float’>)

gravity

-9.8

(-inf, -0.1, <class ‘float’>)

friction

0.6

(-inf, inf, <class ‘float’>)

angular_damping

-0.05

(-inf, inf, <class ‘float’>)

actuator_strength

300.0

(1, inf, <class ‘float’>)

joint_angular_damping

35.0

(0, inf, <class ‘float’>)

torso_mass

10.0

(0.1, inf, <class ‘float’>)

CARL Fetch Environment

Screenshot of CARLFetch

Fetch trains a robotic dog to run to a target location. The target radius and distance as well as physical properties can be varied via the context features.

Defaults and Bounds

Context Feature

Default

Bounds

joint_stiffness

5000.0

(1, inf, <class ‘float’>)

gravity

-9.8

(-inf, -0.1, <class ‘float’>)

friction

0.6

(-inf, inf, <class ‘float’>)

angular_damping

-0.05

(-inf, inf, <class ‘float’>)

actuator_strength

300.0

(1, inf, <class ‘float’>)

joint_angular_damping

35.0

(0, inf, <class ‘float’>)

torso_mass

1.0

(0.1, inf, <class ‘float’>)

target_radius

2.0

(0.1, inf, <class ‘float’>)

target_distance

15.0

(0.1, inf, <class ‘float’>)

CARL Grasp Environment

Screenshot of CARLGrasp

In CARL Grasp the agent is trained to pick up an object with a robot hand. Three bodies are observed by Grasp: ‘Hand’, ‘Object’, and ‘Target’. When Object reaches Target, the agent is rewarded. Apart from Grasp’s pyhiscal properties the target radius, height and distance are also varied.

Defaults and Bounds

Context Feature

Default

Bounds

joint_stiffness

5000.0

(1, inf, <class ‘float’>)

gravity

-9.8

(-inf, -0.1, <class ‘float’>)

friction

0.6

(-inf, inf, <class ‘float’>)

angular_damping

-0.05

(-inf, inf, <class ‘float’>)

actuator_strength

300.0

(1, inf, <class ‘float’>)

joint_angular_damping

50.0

(0, inf, <class ‘float’>)

target_radius

1.1

(0.1, inf, <class ‘float’>)

target_distance

10.0

(0.1, inf, <class ‘float’>)

target_height

8.0

(0.1, inf, <class ‘float’>)

CARL Halfcheetah Environment

Screenshot of CARLHalfcheetah

A Halfcheetah is trained to run in a given direction. The context features can vary physical properties.

Defaults and Bounds

Context Feature

Default

Bounds

joint_stiffness

15000.0

(1, inf, <class ‘float’>)

gravity

-9.8

(-inf, -0.1, <class ‘float’>)

friction

0.6

(-inf, inf, <class ‘float’>)

angular_damping

-0.05

(-inf, inf, <class ‘float’>)

joint_angular_damping

20.0

(0, inf, <class ‘float’>)

torso_mass

9.457333

(0.1, inf, <class ‘float’>)

CARL Humanoid Environment

Screenshot of CARLHumanoid

Here, a Humanoid needs to learn how to walk forward.

Defaults and Bounds

Context Feature

Default

Bounds

gravity

-9.8

(-inf, -0.1, <class ‘float’>)

friction

0.6

(-inf, inf, <class ‘float’>)

angular_damping

-0.05

(-inf, inf, <class ‘float’>)

joint_angular_damping

20.0

(0, inf, <class ‘float’>)

torso_mass

8.907463

(0.1, inf, <class ‘float’>)

CARL UR5e Environment

Screenshot of CARLUr5e

The agent needs to learn how to move a ur5e robot arm and its end effector to a sequence of targets. The robot arm has 6 joints.

Defaults and Bounds

Context Feature

Default

Bounds

joint_stiffness

40000.0

(1, inf, <class ‘float’>)

gravity

-9.81

(-inf, -0.1, <class ‘float’>)

friction

0.6

(-inf, inf, <class ‘float’>)

angular_damping

-0.05

(-inf, inf, <class ‘float’>)

actuator_strength

100.0

(1, inf, <class ‘float’>)

joint_angular_damping

50.0

(0, 360, <class ‘float’>)

target_radius

0.02

(0.01, inf, <class ‘float’>)

target_distance

0.5

(0.01, inf, <class ‘float’>)

torso_mass

1.0

(0, inf, <class ‘float’>)