smac.optimizer.configuration_chooser.random_chooser¶
Classes
|
Interleave a random configuration according to a given probability which is decreased according to a cosine annealing schedule. |
|
Interleave a random configuration, decreasing the fraction of random configurations over time. |
|
Interleave a random configuration after a constant number of configurations found by Bayesian optimization. |
|
Interleave a random configuration according to a given probability. |
|
Interleave a random configuration according to a given probability which is decreased over time. |
|
Abstract base of helper classes to configure interleaving of random configurations in a list of challengers. |
- class smac.optimizer.configuration_chooser.random_chooser.ChooserCosineAnnealing(rng, prob_max, prob_min, restart_iteration)[source]¶
Bases:
smac.optimizer.configuration_chooser.random_chooser.RandomChooserInterleave a random configuration according to a given probability which is decreased according to a cosine annealing schedule.
- Parameters
prob_max (float) – Initial probility of a random configuration
prob_min (float) – Lowest probility of a random configuration
restart_iteration (int) – Restart the annealing schedule every
restart_iterationiterations.rng (np.random.RandomState) – Random state
- class smac.optimizer.configuration_chooser.random_chooser.ChooserLinearCoolDown(rng=None, start_modulus=2.0, modulus_increment=0.3, end_modulus=inf)[source]¶
Bases:
smac.optimizer.configuration_chooser.random_chooser.RandomChooserInterleave a random configuration, decreasing the fraction of random configurations over time.
- Parameters
start_modulus (float) – Initially, every modulus-th configuration will be at random
modulus_increment (float) – Increase modulus by this amount in every iteration
end_modulus (float) – Highest modulus used in the chooser. If the value is reached before the optimization is over, it is not further increased. If it is not reached before the optimization is over, there will be no adjustment to make sure that the
end_modulusis reached.
- class smac.optimizer.configuration_chooser.random_chooser.ChooserNoCoolDown(rng=None, modulus=2.0)[source]¶
Bases:
smac.optimizer.configuration_chooser.random_chooser.RandomChooserInterleave a random configuration after a constant number of configurations found by Bayesian optimization.
- Parameters
modulus (float) – Every modulus-th configuration will be at random.
- class smac.optimizer.configuration_chooser.random_chooser.ChooserProb(rng, prob)[source]¶
Bases:
smac.optimizer.configuration_chooser.random_chooser.RandomChooserInterleave a random configuration according to a given probability.
- Parameters
prob (float) – Probility of a random configuration
rng (np.random.RandomState) – Random state
- class smac.optimizer.configuration_chooser.random_chooser.ChooserProbCoolDown(rng, prob, cool_down_fac)[source]¶
Bases:
smac.optimizer.configuration_chooser.random_chooser.RandomChooserInterleave a random configuration according to a given probability which is decreased over time.
- Parameters
prob (float) – Probility of a random configuration
cool_down_fac (float) – Multiply the
probbycool_down_facin each iterationrng (np.random.RandomState) – Random state
- class smac.optimizer.configuration_chooser.random_chooser.RandomChooser(rng=None)[source]¶
Bases:
abc.ABCAbstract base of helper classes to configure interleaving of random configurations in a list of challengers.