smac.optimizer.configuration_chooser.epm_chooser¶
Classes
|
Interface to train the EPM and generate/choose next configurations. |
- class smac.optimizer.configuration_chooser.epm_chooser.EPMChooser(scenario, stats, runhistory, runhistory2epm, model, acq_optimizer, acquisition_func, rng, restore_incumbent=None, random_configuration_chooser=<smac.optimizer.configuration_chooser.random_chooser.ChooserNoCoolDown object>, predict_x_best=True, min_samples_model=1, **epm_chooser_kwargs)[source]¶
Bases:
object
Interface to train the EPM and generate/choose next configurations.
- Parameters
scenario (smac.scenario.scenario.Scenario) – Scenario object
stats (smac.stats.stats.Stats) – statistics object with configuration budgets
runhistory (smac.runhistory.runhistory.RunHistory) – runhistory with all runs so far
model (smac.epm.rf_with_instances.RandomForestWithInstances) – empirical performance model (right now, we support only RandomForestWithInstances)
acq_optimizer (smac.optimizer.ei_optimization.AcquisitionFunctionMaximizer) – Optimizer of acquisition function.
restore_incumbent (Configuration) – incumbent to be used from the start. ONLY used to restore states.
rng (np.random.RandomState) – Random number generator
random_configuration_chooser (
RandomChooser
) –Chooser for random configuration – one of
ChooserNoCoolDown(modulus)
ChooserLinearCoolDown(start_modulus, modulus_increment, end_modulus)
predict_x_best (bool) – Choose x_best for computing the acquisition function via the model instead of via the observations.
min_samples_model (int) – Minimum number of samples to build a model
epm_chooser_kwargs (Any:) – additional arguments passed to EPMChooser (Might be used by its subclasses)
- choose_next(incumbent_value=None)[source]¶
Choose next candidate solution with Bayesian optimization. The suggested configurations depend on the argument
acq_optimizer
to theSMBO
class.- Parameters
incumbent_value (float) – Cost value of incumbent configuration (required for acquisition function); If not given, it will be inferred from runhistory or predicted; if not given and runhistory is empty, it will raise a ValueError.
- Return type
Iterator