smac.optimizer.configuration_chooser.epm_chooser¶
Classes
| 
 | Interface to train the EPM and generate/choose next configurations. | 
- class smac.optimizer.configuration_chooser.epm_chooser.EPMChooser(scenario, stats, runhistory, runhistory2epm, model, acq_optimizer, acquisition_func, rng, restore_incumbent=None, random_configuration_chooser=<smac.optimizer.configuration_chooser.random_chooser.ChooserNoCoolDown object>, predict_x_best=True, min_samples_model=1, **epm_chooser_kwargs)[source]¶
- Bases: - object- Interface to train the EPM and generate/choose next configurations. - Parameters
- scenario (smac.scenario.scenario.Scenario) – Scenario object 
- stats (smac.stats.stats.Stats) – statistics object with configuration budgets 
- runhistory (smac.runhistory.runhistory.RunHistory) – runhistory with all runs so far 
- model (smac.epm.rf_with_instances.RandomForestWithInstances) – empirical performance model (right now, we support only RandomForestWithInstances) 
- acq_optimizer (smac.optimizer.ei_optimization.AcquisitionFunctionMaximizer) – Optimizer of acquisition function. 
- restore_incumbent (Configuration) – incumbent to be used from the start. ONLY used to restore states. 
- rng (np.random.RandomState) – Random number generator 
- random_configuration_chooser ( - RandomChooser) –- Chooser for random configuration – one of - ChooserNoCoolDown(modulus) 
- ChooserLinearCoolDown(start_modulus, modulus_increment, end_modulus) 
 
- predict_x_best (bool) – Choose x_best for computing the acquisition function via the model instead of via the observations. 
- min_samples_model (int) – Minimum number of samples to build a model 
- epm_chooser_kwargs (Any:) – additional arguments passed to EPMChooser (Might be used by its subclasses) 
 
 - choose_next(incumbent_value=None)[source]¶
- Choose next candidate solution with Bayesian optimization. The suggested configurations depend on the argument - acq_optimizerto the- SMBOclass.- Parameters
- incumbent_value (float) – Cost value of incumbent configuration (required for acquisition function); If not given, it will be inferred from runhistory or predicted; if not given and runhistory is empty, it will raise a ValueError. 
- Return type
- Iterator