smac.epm.gaussian_process.utils.prior¶
Classes
|
|
|
|
|
|
|
Abstract base class to define the interface for priors of GP hyperparameter. |
|
|
|
- class smac.epm.gaussian_process.utils.prior.Prior(rng)[source]¶
Bases:
object
Abstract base class to define the interface for priors of GP hyperparameter.
This class is adapted from RoBO:
Klein, A. and Falkner, S. and Mansur, N. and Hutter, F. RoBO: A Flexible and Robust Bayesian Optimization Framework in Python In: NIPS 2017 Bayesian Optimization Workshop
[16.04.2019]: Whenever lnprob or the gradient is computed for a scalar input, we use math.* rather than np.*
- Parameters
rng (np.random.RandomState) – Random number generator
- gradient(theta)[source]¶
Computes the gradient of the prior with respect to theta.
Theta must be on the original scale.
- Parameters
theta (float) – Hyperparameter configuration in log space
- Returns
The gradient of the prior at theta.
- Return type
float
- class smac.epm.gaussian_process.utils.prior.SoftTopHatPrior(lower_bound, upper_bound, exponent, rng)[source]¶