smac.epm.gaussian_process.kernels¶
Functions
|
Returns conditional hyperparameters. |
Classes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- class smac.epm.gaussian_process.kernels.ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0), operate_on=None, prior=None, has_conditions=False)[source]¶
Bases:
smac.epm.gaussian_process.kernels.MagicMixin
,sklearn.gaussian_process.kernels.ConstantKernel
- class smac.epm.gaussian_process.kernels.HammingKernel(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0), operate_on=None, prior=None, has_conditions=False)[source]¶
Bases:
smac.epm.gaussian_process.kernels.MagicMixin
,sklearn.gaussian_process.kernels.StationaryKernelMixin
,sklearn.gaussian_process.kernels.NormalizedKernelMixin
,sklearn.gaussian_process.kernels.Kernel
- property hyperparameter_length_scale: sklearn.gaussian_process.kernels.Hyperparameter¶
Hyperparameter of the length scale.
- Return type
Hyperparameter
- class smac.epm.gaussian_process.kernels.Matern(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0), nu=1.5, operate_on=None, prior=None, has_conditions=False)[source]¶
Bases:
smac.epm.gaussian_process.kernels.MagicMixin
,sklearn.gaussian_process.kernels.Matern
- class smac.epm.gaussian_process.kernels.Product(k1, k2, operate_on=None, has_conditions=False)[source]¶
Bases:
smac.epm.gaussian_process.kernels.MagicMixin
,sklearn.gaussian_process.kernels.Product
- class smac.epm.gaussian_process.kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0), operate_on=None, prior=None, has_conditions=False)[source]¶
Bases:
smac.epm.gaussian_process.kernels.MagicMixin
,sklearn.gaussian_process.kernels.RBF
- class smac.epm.gaussian_process.kernels.Sum(k1, k2, operate_on=None, has_conditions=False)[source]¶
Bases:
smac.epm.gaussian_process.kernels.MagicMixin
,sklearn.gaussian_process.kernels.Sum
- class smac.epm.gaussian_process.kernels.WhiteKernel(noise_level=1.0, noise_level_bounds=(1e-05, 100000.0), operate_on=None, prior=None, has_conditions=False)[source]¶
Bases:
smac.epm.gaussian_process.kernels.MagicMixin
,sklearn.gaussian_process.kernels.WhiteKernel
- smac.epm.gaussian_process.kernels.get_conditional_hyperparameters(X, Y=None)[source]¶
Returns conditional hyperparameters.
- Return type
ndarray
Modules