smac.epm.gaussian_process.augmented¶
Classes
|
|
|
|
|
A variational GP to compute the position of the inducing points. |
- class smac.epm.gaussian_process.augmented.AugmentedLocalGaussianProcess(X_in, y_in, X_out, y_out, likelihood, base_covar_kernel)[source]¶
Bases:
gpytorch.models.exact_gp.ExactGP
- class smac.epm.gaussian_process.augmented.GloballyAugmentedLocalGaussianProcess(configspace, types, bounds, bounds_cont, bounds_cat, seed, kernel, num_inducing_points=2, likelihood=None, normalize_y=True, n_opt_restarts=10, instance_features=None, pca_components=None)[source]¶
Bases:
smac.epm.gaussian_process.gpytorch.GPyTorchGaussianProcess
- class smac.epm.gaussian_process.augmented.VariationalGaussianProcess(kernel, X_inducing)[source]¶
Bases:
gpytorch.models.approximate_gp.ApproximateGP
A variational GP to compute the position of the inducing points. We only optimize for the position of the continuous dimensions and keep the categorical dimensions constant.