smac.epm.gaussian_process.gpytorch¶
Classes
|
Exact GP model serves as a backbone of the class GaussianProcessGPyTorch |
|
- class smac.epm.gaussian_process.gpytorch.ExactGPModel(train_X, train_y, base_covar_kernel, likelihood)[source]¶
Bases:
gpytorch.models.exact_gp.ExactGP
Exact GP model serves as a backbone of the class GaussianProcessGPyTorch
- class smac.epm.gaussian_process.gpytorch.GPyTorchGaussianProcess(configspace, types, bounds, seed, kernel, normalize_y=True, n_opt_restarts=10, likelihood=None, instance_features=None, pca_components=None)[source]¶
Bases:
smac.epm.gaussian_process.BaseModel
- sample_functions(X_test, n_funcs=1)[source]¶
Samples F function values from the current posterior at the N specified test points.
- Parameters
X_test (np.ndarray (N, D)) – Input test points
n_funcs (int) – The number of function values that are drawn at each test point.
- Returns
function_samples – The F function values drawn at the N test points.
- Return type
np.array(F, N)