Source code for smac.runhistory.encoder.abstract_encoder

from __future__ import annotations

from abc import abstractmethod
from typing import Any, Mapping

import numpy as np

from smac.multi_objective import AbstractMultiObjectiveAlgorithm
from smac.runhistory.runhistory import RunHistory, TrialKey, TrialValue
from smac.runner.abstract_runner import StatusType
from smac.scenario import Scenario
from smac.utils.configspace import convert_configurations_to_array
from smac.utils.logging import get_logger

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"


logger = get_logger(__name__)


[docs] class AbstractRunHistoryEncoder: """Abstract class for preparing data in order to train a surrogate model. Parameters ---------- scenario : Scenario object. considered_states : list[StatusType], defaults to [StatusType.SUCCESS, StatusType.CRASHED, StatusType.MEMORYOUT] # noqa: E501 Trials with the passed states are considered. lower_budget_states : list[StatusType], defaults to [] Additionally consider all trials with these states for budget < current budget. scale_percentage : int, defaults to 5 Scaled y-transformation use a percentile to estimate distance to optimum. Only used in some sub-classes. seed : int | None, defaults to none Raises ------ TypeError If no success states are given. """ def __init__( self, scenario: Scenario, considered_states: list[StatusType] = None, lower_budget_states: list[StatusType] = None, scale_percentage: int = 5, seed: int | None = None, ) -> None: if considered_states is None: considered_states = [ StatusType.SUCCESS, StatusType.CRASHED, StatusType.MEMORYOUT, ] if seed is None: seed = scenario.seed self._seed = seed self._rng = np.random.RandomState(seed) self._scale_percentage = scale_percentage self._n_objectives = scenario.count_objectives() self._algorithm_walltime_limit = scenario.trial_walltime_limit self._lower_budget_states = lower_budget_states if lower_budget_states is not None else [] self._considered_states = considered_states self._instances = scenario.instances self._instance_features = scenario.instance_features self._n_features = scenario.count_instance_features() self._n_params = len(scenario.configspace.get_hyperparameters()) if self._instances is not None and self._n_features == 0: logger.warning( "We strongly encourage to use instance features when using instances.", "If no instance features are passed, the runhistory encoder can not distinguish between different " "instances and therefore returns the same data points with different values, all of which are " "used to train the surrogate model.\n" "Consider using instance indices as features.", ) # Learned statistics self._min_y = np.array([np.NaN] * self._n_objectives) self._max_y = np.array([np.NaN] * self._n_objectives) self._percentile = np.array([np.NaN] * self._n_objectives) self._multi_objective_algorithm: AbstractMultiObjectiveAlgorithm | None = None self._runhistory: RunHistory | None = None @property def meta(self) -> dict[str, Any]: """ Returns the meta-data of the created object. Returns ------- dict[str, Any]: meta-data of the created object: name, considered states, lower budget states, scale_percentage, seed. """ return { "name": self.__class__.__name__, "considered_states": self._considered_states, "lower_budget_states": self._lower_budget_states, "scale_percentage": self._scale_percentage, "seed": self._seed, } @property def runhistory(self) -> RunHistory: """The RunHistory used to transform the data.""" assert self._runhistory is not None return self._runhistory @runhistory.setter def runhistory(self, runhistory: RunHistory) -> None: """Sets the multi objective algorithm.""" self._runhistory = runhistory @property def multi_objective_algorithm(self) -> AbstractMultiObjectiveAlgorithm | None: """The multi objective algorithm used to transform the data.""" return self._multi_objective_algorithm @multi_objective_algorithm.setter def multi_objective_algorithm(self, algorithm: AbstractMultiObjectiveAlgorithm) -> None: """Sets the multi objective algorithm.""" self._multi_objective_algorithm = algorithm @abstractmethod def _build_matrix( self, trials: Mapping[TrialKey, TrialValue], store_statistics: bool = False, ) -> tuple[np.ndarray, np.ndarray]: """Builds x and y matrices from selected runs of the RunHistory. Parameters ---------- trials : Mapping[TrialKey, TrialValue] runhistory : RunHistory store_statistics: bool, defaults to false Whether to store statistics about the data (to be used at subsequent calls). Returns ------- X : np.ndarray Y : np.ndarray """ raise NotImplementedError() def _get_considered_trials( self, budget_subset: list | None = None, ) -> dict[TrialKey, TrialValue]: """ Returns all trials that are considered for the model. Depends on the user's considered states and lower budget states. Parameters ---------- budget_subset : list[int|float] | None, defaults to None. """ trials: dict[TrialKey, TrialValue] = {} if budget_subset is not None: if len(budget_subset) != 1: raise ValueError("Can not yet handle getting runs from multiple budgets.") for trial_key, trial_value in self.runhistory.items(): add = False if budget_subset is not None: if trial_key.budget in budget_subset and trial_value.status in self._considered_states: add = True if ( trial_key.budget is not None and budget_subset[0] is not None and trial_key.budget < budget_subset[0] and trial_value.status in self._lower_budget_states ): add = True else: # Get only successfully finished runs if trial_value.status in self._considered_states: add = True if add: trials[trial_key] = trial_value return trials def _get_timeout_trials( self, budget_subset: list | None = None, ) -> dict[TrialKey, TrialValue]: """Returns all trials that did have a timeout.""" if budget_subset is not None: trials = { trial: self.runhistory[trial] for trial in self.runhistory if self.runhistory[trial].status == StatusType.TIMEOUT # and runhistory.data[run].time >= self._algorithm_walltime_limit # type: ignore and trial.budget in budget_subset } else: trials = { trial: self.runhistory[trial] for trial in self.runhistory if self.runhistory[trial].status == StatusType.TIMEOUT # and runhistory.data[run].time >= self._algorithm_walltime_limit # type: ignore } return trials
[docs] def get_configurations( self, budget_subset: list | None = None, ) -> np.ndarray: """Returns vector representation of the configurations. Warning ------- Instance features are not appended and cost values are not taken into account. Parameters ---------- budget_subset : list[int|float] | None, defaults to none List of budgets to consider. Returns ------- configs_array : np.ndarray """ s_trials = self._get_considered_trials(budget_subset) s_config_ids = set(s_trial.config_id for s_trial in s_trials) t_trials = self._get_timeout_trials(budget_subset) t_config_ids = set(t_trial.config_id for t_trial in t_trials) config_ids = s_config_ids | t_config_ids configurations = [self.runhistory._ids_config[config_id] for config_id in config_ids] configs_array = convert_configurations_to_array(configurations) return configs_array
[docs] def transform( self, budget_subset: list | None = None, ) -> tuple[np.ndarray, np.ndarray]: """Returns a vector representation of the RunHistory. Parameters ---------- budget_subset : list | None, defaults to none List of budgets to consider. Returns ------- X : np.ndarray Configuration vector and instance features. Y : np.ndarray Cost values. """ logger.debug("Transforming RunHistory into X, y format...") considered_trials = self._get_considered_trials(budget_subset) X, Y = self._build_matrix(trials=considered_trials, store_statistics=True) # Get real TIMEOUT runs timeout_trials = self._get_timeout_trials(budget_subset) # Use penalization (e.g. PAR10) for EPM training store_statistics = True if np.any(np.isnan(self._min_y)) else False tX, tY = self._build_matrix(trials=timeout_trials, store_statistics=store_statistics) # If we don't have successful runs, we have to return all timeout runs if not considered_trials: return tX, tY # If we do not impute, we also return TIMEOUT data X = np.vstack((X, tX)) Y = np.concatenate((Y, tY)) logger.debug("Converted %d observations." % (X.shape[0])) return X, Y
[docs] @abstractmethod def transform_response_values( self, values: np.ndarray, ) -> np.ndarray: """Transform function response values. Parameters ---------- values : np.ndarray Response values to be transformed. Returns ------- transformed_values : np.ndarray """ raise NotImplementedError