v2.0.2 v2.0.1 v2.0.0 v2.0.0b1 v2.0.0a2 v2.0.0a1 v1.4.0

SMAC3 Documentation

v2.0.2
  • Installation
  • Package Overview
  • Getting Started
  • Minimal Example
  • Examples
    • Basics
      • Quadratic Function
      • Support Vector Machine with Cross-Validation
      • Ask-and-Tell
      • Custom Callback
      • Continue an Optimization
      • User Priors over the Optimum
    • Multi-Fidelity and Multi-Instances
      • Multi-Layer Perceptron Using Multiple Epochs
      • Stochastic Gradient Descent On Multiple Datasets
    • Multi-Objective
      • 2D Schaffer Function with Objective Weights
      • ParEGO
    • Command-Line Interface
      • Call Target Function From Script
  • Advanced Usage
    • Components
    • Multi-Fidelity Optimization
    • Multi-Objective Optimization
    • Optimization across Instances
    • Ask-and-Tell Interface
    • Command-Line Interface
    • Stopping Criteria
    • Logging
    • Parallelism
    • Continue
    • Reproducibility
    • Optimizations
  • API References
    • smac.facade
      • smac.facade.abstract_facade
      • smac.facade.algorithm_configuration_facade
      • smac.facade.blackbox_facade
      • smac.facade.hyperband_facade
      • smac.facade.hyperparameter_optimization_facade
      • smac.facade.multi_fidelity_facade
      • smac.facade.random_facade
    • smac.main
      • smac.main.config_selector
      • smac.main.smbo
    • smac.model
      • smac.model.abstract_model
      • smac.model.gaussian_process
        • smac.model.gaussian_process.abstract_gaussian_process
        • smac.model.gaussian_process.gaussian_process
        • smac.model.gaussian_process.gpytorch_gaussian_process
        • smac.model.gaussian_process.kernels
        • smac.model.gaussian_process.mcmc_gaussian_process
        • smac.model.gaussian_process.priors
      • smac.model.multi_objective_model
      • smac.model.random_forest
        • smac.model.random_forest.abstract_random_forest
        • smac.model.random_forest.random_forest
      • smac.model.random_model
    • smac.acquisition
      • smac.acquisition.function
        • smac.acquisition.function.abstract_acquisition_function
        • smac.acquisition.function.confidence_bound
        • smac.acquisition.function.expected_improvement
        • smac.acquisition.function.integrated_acquisition_function
        • smac.acquisition.function.prior_acqusition_function
        • smac.acquisition.function.probability_improvement
        • smac.acquisition.function.thompson
      • smac.acquisition.maximizer
        • smac.acquisition.maximizer.abstract_acqusition_maximizer
        • smac.acquisition.maximizer.differential_evolution
        • smac.acquisition.maximizer.helpers
        • smac.acquisition.maximizer.local_and_random_search
        • smac.acquisition.maximizer.local_search
        • smac.acquisition.maximizer.random_search
    • smac.intensifier
      • smac.intensifier.abstract_intensifier
      • smac.intensifier.hyperband
      • smac.intensifier.intensifier
      • smac.intensifier.successive_halving
    • smac.initial_design
      • smac.initial_design.abstract_initial_design
      • smac.initial_design.default_design
      • smac.initial_design.factorial_design
      • smac.initial_design.latin_hypercube_design
      • smac.initial_design.random_design
      • smac.initial_design.sobol_design
    • smac.random_design
      • smac.random_design.abstract_random_design
      • smac.random_design.annealing_design
      • smac.random_design.modulus_design
      • smac.random_design.probability_design
    • smac.runner
      • smac.runner.abstract_runner
      • smac.runner.abstract_serial_runner
      • smac.runner.dask_runner
      • smac.runner.exceptions
      • smac.runner.target_function_runner
      • smac.runner.target_function_script_runner
    • smac.runhistory
      • smac.runhistory.dataclasses
      • smac.runhistory.encoder
        • smac.runhistory.encoder.abstract_encoder
        • smac.runhistory.encoder.boing_encoder
        • smac.runhistory.encoder.eips_encoder
        • smac.runhistory.encoder.encoder
        • smac.runhistory.encoder.inverse_scaled_encoder
        • smac.runhistory.encoder.log_encoder
        • smac.runhistory.encoder.log_scaled_encoder
        • smac.runhistory.encoder.scaled_encoder
        • smac.runhistory.encoder.sqrt_scaled_encoder
      • smac.runhistory.enumerations
      • smac.runhistory.errors
      • smac.runhistory.runhistory
    • smac.multi_objective
      • smac.multi_objective.abstract_multi_objective_algorithm
      • smac.multi_objective.aggregation_strategy
      • smac.multi_objective.parego
    • smac.utils
      • smac.utils.configspace
      • smac.utils.data_structures
      • smac.utils.logging
      • smac.utils.multi_objective
      • smac.utils.pareto_front
      • smac.utils.subspaces
        • smac.utils.subspaces.boing_subspace
        • smac.utils.subspaces.turbo_subspace
    • smac.scenario
    • smac.callback
      • smac.callback.callback
      • smac.callback.metadata_callback
  • References
  • Glossary
  • F.A.Q.
  • License
On this page
  • Classes
  • Interfaces
    • LocalAndSortedRandomSearch
      • LocalAndSortedRandomSearch.acquisition_function
      • LocalAndSortedRandomSearch.meta

smac.acquisition.maximizer.local_and_random_search¶

Classes¶

LocalAndSortedRandomSearch(configspace[, ...])

Implement SMAC's default acquisition function optimization.

Interfaces¶

class smac.acquisition.maximizer.local_and_random_search.LocalAndSortedRandomSearch(configspace, acquisition_function=None, challengers=5000, max_steps=None, n_steps_plateau_walk=10, local_search_iterations=10, seed=0, uniform_configspace=None, prior_sampling_fraction=None)[source]¶

Bases: AbstractAcquisitionMaximizer

Implement SMAC’s default acquisition function optimization.

This optimizer performs local search from the previous best points according to the acquisition function, uses the acquisition function to sort randomly sampled configurations. Random configurations are interleaved by the main SMAC code.

The Random configurations are interleaved to circumvent issues from a constant prediction from the Random Forest model at the beginning of the optimization process.

Parameters:
  • configspace (ConfigurationSpace)

  • uniform_configspace (ConfigurationSpace) – A version of the user-defined ConfigurationSpace where all parameters are uniform (or have their weights removed in the case of a categorical hyperparameter). Can optionally be given and sampling ratios be defined via the prior_sampling_fraction parameter.

  • acquisition_function (AbstractAcquisitionFunction | None, defaults to None)

  • challengers (int, defaults to 5000) – Number of challengers.

  • max_steps (int | None, defaults to None) – [LocalSearch] Maximum number of steps that the local search will perform.

  • n_steps_plateau_walk (int, defaults to 10) – [LocalSearch] number of steps during a plateau walk before local search terminates.

  • local_search_iterations (int, defauts to 10) – [Local Search] number of local search iterations.

  • prior_sampling_fraction (float, defaults to 0.5) – The ratio of random samples that are taken from the user-defined ConfigurationSpace, as opposed to the uniform version (needs `uniform_configspace`to be defined).

  • seed (int, defaults to 0)

property acquisition_function: AbstractAcquisitionFunction | None¶

Returns the used acquisition function.

property meta: dict[str, Any]¶

Return the meta-data of the created object.

previous

smac.acquisition.maximizer.helpers

next

smac.acquisition.maximizer.local_search

© Copyright Copyright 2024, Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass and Frank Hutter.

Created using Sphinx 7.3.7. Template is modified version of PyData Sphinx Theme.