Source code for smac.random_design.annealing_design

from __future__ import annotations

from typing import Any

import numpy as np

from smac.random_design.abstract_random_design import AbstractRandomDesign
from smac.utils.logging import get_logger

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"

logger = get_logger(__name__)


[docs] class CosineAnnealingRandomDesign(AbstractRandomDesign): """Interleaves a random configuration according to a given probability which is decreased according to a cosine annealing schedule. Parameters ---------- max_probability : float Initial (maximum) probability of a random configuration. min_probability : float Final (minimal) probability of a random configuration used in iteration `restart_iteration`. restart_iteration : int Restart the annealing schedule every `restart_iteration` iterations. seed : int Integer used to initialize random state. """ def __init__(self, min_probability: float, max_probability: float, restart_iteration: int, seed: int = 0): super().__init__(seed) assert 0 <= min_probability <= 1 assert 0 <= max_probability <= 1 assert max_probability > min_probability assert restart_iteration > 2 self._max_probability = max_probability self._min_probability = min_probability # Internally, iteration indices start at 0, so we need to decrease this self._restart_iteration = restart_iteration - 1 self._iteration = 0 self._probability = max_probability @property def meta(self) -> dict[str, Any]: # noqa: D102 meta = super().meta meta.update( { "max_probability": self._max_probability, "min_probability": self._min_probability, "restart_iteration": self._restart_iteration, } ) return meta
[docs] def next_iteration(self) -> None: # noqa: D102 """Moves to the next iteration and set ``self._probability``.""" self._iteration += 1 if self._iteration > self._restart_iteration: self._iteration = 0 logger.debug("Perform a restart.") self._probability = self._min_probability + ( 0.5 * (self._max_probability - self._min_probability) * (1 + np.cos(self._iteration * np.pi / self._restart_iteration)) ) logger.debug(f"Probability for random configs: {self._probability}")
[docs] def check(self, iteration: int) -> bool: # noqa: D102 assert iteration >= 0 if self._rng.rand() <= self._probability: return True else: return False