Source code for smac.model.multi_objective_model

from __future__ import annotations

from typing import TypeVar

import numpy as np

from smac.model.abstract_model import AbstractModel

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"


Self = TypeVar("Self", bound="MultiObjectiveModel")


[docs] class MultiObjectiveModel(AbstractModel): """Wrapper for the surrogate model to predict multiple objectives. Parameters ---------- models : AbstractModel | list[AbstractModel] Which model should be used. If it is a list, then it must provide as many models as objectives. If it is a single model only, the model is used for all objectives. objectives : list[str] Which objectives should be used. seed : int """ def __init__( self, models: AbstractModel | list[AbstractModel], objectives: list[str], seed: int = 0, ) -> None: self._n_objectives = len(objectives) if isinstance(models, list): assert len(models) == len(objectives) # Make sure the configspace is the same configspace = models[0]._configspace for m in models: assert configspace == m._configspace self._models = models else: configspace = models._configspace self._models = [models for _ in range(self._n_objectives)] super().__init__( configspace=configspace, instance_features=None, pca_components=None, seed=seed, ) @property def models(self) -> list[AbstractModel]: """The internally used surrogate models.""" return self._models
[docs] def predict_marginalized(self, X: np.ndarray) -> tuple[np.ndarray, np.ndarray]: # noqa: D102 mean = np.zeros((X.shape[0], self._n_objectives)) var = np.zeros((X.shape[0], self._n_objectives)) for i, estimator in enumerate(self._models): m, v = estimator.predict_marginalized(X) mean[:, i] = m.flatten() var[:, i] = v.flatten() return mean, var
def _train(self: Self, X: np.ndarray, Y: np.ndarray) -> Self: if len(self._models) == 0: raise ValueError("The list of surrogate models is empty.") for i, model in enumerate(self._models): model.train(X, Y[:, i]) return self def _predict( self, X: np.ndarray, covariance_type: str | None = "diagonal", ) -> tuple[np.ndarray, np.ndarray | None]: if covariance_type != "diagonal": raise ValueError("`covariance_type` can only take `diagonal` for this model.") mean = np.zeros((X.shape[0], self._n_objectives)) var = np.zeros((X.shape[0], self._n_objectives)) for i, estimator in enumerate(self._models): m, v = estimator.predict(X) assert v is not None mean[:, i] = m.flatten() var[:, i] = v.flatten() return mean, var