from __future__ import annotations
import numpy as np
import sklearn.gaussian_process.kernels as kernels
from smac.model.gaussian_process.kernels.base_kernels import AbstractKernel
from smac.model.gaussian_process.priors.abstract_prior import AbstractPrior
__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"
[docs]
class WhiteKernel(AbstractKernel, kernels.WhiteKernel):
"""White kernel implementation."""
def __init__(
self,
noise_level: float | tuple[float, ...] = 1.0,
noise_level_bounds: tuple[float, float] | list[tuple[float, float]] = (1e-5, 1e5),
operate_on: np.ndarray | None = None,
has_conditions: bool = False,
prior: AbstractPrior | None = None,
) -> None:
super().__init__(
operate_on=operate_on,
has_conditions=has_conditions,
prior=prior,
noise_level=noise_level,
noise_level_bounds=noise_level_bounds,
)
def _call(
self,
X: np.ndarray,
Y: np.ndarray | None = None,
eval_gradient: bool = False,
active: np.ndarray | None = None,
) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
X = np.atleast_2d(X)
if Y is not None and eval_gradient:
raise ValueError("Gradient can only be evaluated when Y is None.")
if Y is None:
K = self.noise_level * np.eye(X.shape[0])
if active is not None:
K = K * active
if eval_gradient:
if not self.hyperparameter_noise_level.fixed:
return (K, self.noise_level * np.eye(X.shape[0])[:, :, np.newaxis])
else:
return K, np.empty((X.shape[0], X.shape[0], 0))
else:
return K
else:
return np.zeros((X.shape[0], Y.shape[0]))