Source code for smac.model.gaussian_process.abstract_gaussian_process

from __future__ import annotations

from abc import abstractmethod
from typing import Any

import numpy as np
import sklearn.gaussian_process
from ConfigSpace import ConfigurationSpace
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Kernel, KernelOperator

from smac.model.abstract_model import AbstractModel
from smac.model.gaussian_process.priors.abstract_prior import AbstractPrior
from smac.model.gaussian_process.priors.tophat_prior import SoftTopHatPrior, TophatPrior

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"


[docs] class AbstractGaussianProcess(AbstractModel): """Abstract base class for all Gaussian process models. Parameters ---------- configspace : ConfigurationSpace kernel : Kernel Kernel which is used for the Gaussian process. instance_features : dict[str, list[int | float]] | None, defaults to None Features (list of int or floats) of the instances (str). The features are incorporated into the X data, on which the model is trained on. pca_components : float, defaults to 7 Number of components to keep when using PCA to reduce dimensionality of instance features. seed : int """ def __init__( self, configspace: ConfigurationSpace, kernel: Kernel, instance_features: dict[str, list[int | float]] | None = None, pca_components: int | None = 7, seed: int = 0, ): super().__init__( configspace=configspace, instance_features=instance_features, pca_components=pca_components, seed=seed, ) self._kernel = kernel self._gp = self._get_gaussian_process() @property def meta(self) -> dict[str, Any]: # noqa: D102 meta = super().meta meta.update({"kernel": self._kernel.meta}) return meta @abstractmethod def _get_gaussian_process(self) -> GaussianProcessRegressor: """Generates a Gaussian process.""" raise NotImplementedError() def _normalize(self, y: np.ndarray) -> np.ndarray: """Normalize data to zero mean unit standard deviation. Parameters ---------- y : np.ndarray Target values for the Gaussian process. Returns ------- normalized_y : np.ndarray Normalized y values. """ self.mean_y_ = np.mean(y) self.std_y_ = np.std(y) if self.std_y_ == 0: self.std_y_ = 1 return (y - self.mean_y_) / self.std_y_ def _untransform_y( self, y: np.ndarray, var: np.ndarray | None = None, ) -> np.ndarray | tuple[np.ndarray, np.ndarray]: """Transform zero mean unit standard deviation data into the regular space. Warning ------- This function should be used after a prediction with the Gaussian process which was trained on normalized data. Parameters ---------- y : np.ndarray Normalized data. var : np.ndarray | None, defaults to None Normalized variance. Returns ------- untransformed_y : np.ndarray | tuple[np.ndarray, np.ndarray] """ y = y * self.std_y_ + self.mean_y_ if var is not None: var = var * self.std_y_**2 return y, var # type: ignore return y def _get_all_priors( self, add_bound_priors: bool = True, add_soft_bounds: bool = False, ) -> list[list[AbstractPrior]]: """Returns all priors.""" # Obtain a list of all priors for each tunable hyperparameter of the kernel all_priors = [] to_visit = [] to_visit.append(self._gp.kernel.k1) to_visit.append(self._gp.kernel.k2) while len(to_visit) > 0: current_param = to_visit.pop(0) if isinstance(current_param, KernelOperator): to_visit.insert(0, current_param.k1) to_visit.insert(1, current_param.k2) continue elif isinstance(current_param, Kernel): hps = current_param.hyperparameters assert len(hps) == 1 hp = hps[0] if hp.fixed: continue bounds = hps[0].bounds for i in range(hps[0].n_elements): priors_for_hp = [] if current_param.prior is not None: priors_for_hp.append(current_param.prior) if add_bound_priors: if add_soft_bounds: priors_for_hp.append( SoftTopHatPrior( lower_bound=bounds[i][0], upper_bound=bounds[i][1], seed=self._rng.randint(0, 2**20), exponent=2, ) ) else: priors_for_hp.append( TophatPrior( lower_bound=bounds[i][0], upper_bound=bounds[i][1], seed=self._rng.randint(0, 2**20), ) ) all_priors.append(priors_for_hp) return all_priors def _set_has_conditions(self) -> None: """Sets `has_conditions` on `current_param`.""" has_conditions = len(self._configspace.get_conditions()) > 0 to_visit = [] to_visit.append(self._kernel) while len(to_visit) > 0: current_param = to_visit.pop(0) if isinstance(current_param, sklearn.gaussian_process.kernels.KernelOperator): to_visit.insert(0, current_param.k1) to_visit.insert(1, current_param.k2) current_param.has_conditions = has_conditions elif isinstance(current_param, sklearn.gaussian_process.kernels.Kernel): current_param.has_conditions = has_conditions else: raise ValueError(current_param) def _impute_inactive(self, X: np.ndarray) -> np.ndarray: """Imputes inactives.""" X = X.copy() X[~np.isfinite(X)] = -1 return X