Source code for smac.facade.random_facade

from __future__ import annotations

import numpy as np
from ConfigSpace import Configuration

from smac.acquisition.function.abstract_acquisition_function import (
    AbstractAcquisitionFunction,
)
from smac.acquisition.maximizer.random_search import RandomSearch
from smac.facade.abstract_facade import AbstractFacade
from smac.initial_design.default_design import DefaultInitialDesign
from smac.intensifier.intensifier import Intensifier
from smac.model.random_model import RandomModel
from smac.multi_objective.aggregation_strategy import MeanAggregationStrategy
from smac.random_design import AbstractRandomDesign
from smac.runhistory.encoder.encoder import RunHistoryEncoder
from smac.scenario import Scenario

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"


[docs] class RandomFacade(AbstractFacade): """ Facade to use Random Online Aggressive Racing (ROAR). *Aggressive Racing:* When we have a new configuration θ, we want to compare it to the current best configuration, the incumbent θ*. ROAR uses the 'racing' approach, where we run few times for unpromising θ and many times for promising configurations. Once we are confident enough that θ is better than θ*, we update the incumbent θ* ⟵ θ. `Aggressive` means rejecting low-performing configurations very early, often after a single run. This together is called `aggressive racing`. *ROAR Loop:* The main ROAR loop looks as follows: 1. Select a configuration θ uniformly at random. 2. Compare θ to incumbent θ* online (one θ at a time): - Reject/accept θ with `aggressive racing` *Setup:* Uses a random model and random search for the optimization of the acquisition function. Note ---- The surrogate model and the acquisition function is not used during the optimization and therefore replaced by dummies. """
[docs] @staticmethod def get_acquisition_function(scenario: Scenario) -> AbstractAcquisitionFunction: """The random facade is not using an acquisition function. Therefore, we simply return a dummy function.""" class DummyAcquisitionFunction(AbstractAcquisitionFunction): def _compute(self, X: np.ndarray) -> np.ndarray: return X return DummyAcquisitionFunction()
[docs] @staticmethod def get_intensifier( scenario: Scenario, *, max_config_calls: int = 3, max_incumbents: int = 10, ) -> Intensifier: """Returns ``Intensifier`` as intensifier. Note ---- Please use the ``HyperbandFacade`` if you want to incorporate budgets. Warning ------- If you are in an algorithm configuration setting, consider increasing ``max_config_calls``. Parameters ---------- max_config_calls : int, defaults to 3 Maximum number of configuration evaluations. Basically, how many instance-seed keys should be max evaluated for a configuration. max_incumbents : int, defaults to 10 How many incumbents to keep track of in the case of multi-objective. """ return Intensifier( scenario=scenario, max_config_calls=max_config_calls, max_incumbents=max_incumbents, )
[docs] @staticmethod def get_initial_design( scenario: Scenario, *, additional_configs: list[Configuration] = None, ) -> DefaultInitialDesign: """Returns an initial design, which returns the default configuration. Parameters ---------- additional_configs: list[Configuration], defaults to [] Adds additional configurations to the initial design. """ if additional_configs is None: additional_configs = [] return DefaultInitialDesign( scenario=scenario, additional_configs=additional_configs, )
[docs] @staticmethod def get_random_design(scenario: Scenario) -> AbstractRandomDesign: """Just like the acquisition function, we do not use a random design. Therefore, we return a dummy design.""" class DummyRandomDesign(AbstractRandomDesign): def check(self, iteration: int) -> bool: return True return DummyRandomDesign()
[docs] @staticmethod def get_model(scenario: Scenario) -> RandomModel: """The model is used in the acquisition function. Since we do not use an acquisition function, we return a dummy model (returning random values in this case). """ return RandomModel( configspace=scenario.configspace, instance_features=scenario.instance_features, seed=scenario.seed, )
[docs] @staticmethod def get_acquisition_maximizer(scenario: Scenario) -> RandomSearch: """We return ``RandomSearch`` as maximizer which samples configurations randomly from the configuration space and therefore neither uses the acquisition function nor the model. """ return RandomSearch( scenario.configspace, seed=scenario.seed, )
[docs] @staticmethod def get_multi_objective_algorithm( # type: ignore scenario: Scenario, *, objective_weights: list[float] | None = None, ) -> MeanAggregationStrategy: """Returns the mean aggregation strategy for the multi-objective algorithm. Parameters ---------- scenario : Scenario objective_weights : list[float] | None, defaults to None Weights for averaging the objectives in a weighted manner. Must be of the same length as the number of objectives. """ return MeanAggregationStrategy( scenario=scenario, objective_weights=objective_weights, )
[docs] @staticmethod def get_runhistory_encoder(scenario: Scenario) -> RunHistoryEncoder: """Returns the default runhistory encoder.""" return RunHistoryEncoder(scenario)