from __future__ import annotations
from abc import abstractmethod
from typing import Any, Iterator
import numpy as np
from ConfigSpace import Configuration, ConfigurationSpace
from smac.acquisition.function.abstract_acquisition_function import (
AbstractAcquisitionFunction,
)
from smac.acquisition.maximizer.helpers import ChallengerList
from smac.random_design.abstract_random_design import AbstractRandomDesign
from smac.utils.logging import get_logger
__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"
logger = get_logger(__name__)
[docs]
class AbstractAcquisitionMaximizer:
"""Abstract class for the acquisition maximization.
In order to use this class it has to be subclassed and the
method `_maximize` must be implemented.
Parameters
----------
configspace : ConfigurationSpace acquisition_function : AbstractAcquisitionFunction
challengers : int, defaults to 5000 Number of configurations sampled during the optimization process,
details depend on the used maximizer. Also, the number of configurations that is returned by calling `maximize`.
seed : int, defaults to 0
"""
def __init__(
self,
configspace: ConfigurationSpace,
acquisition_function: AbstractAcquisitionFunction | None = None,
challengers: int = 5000,
seed: int = 0,
):
self._configspace = configspace
self._acquisition_function = acquisition_function
self._challengers = challengers
self._seed = seed
self._rng = np.random.RandomState(seed=seed)
@property
def acquisition_function(self) -> AbstractAcquisitionFunction | None:
"""The acquisition function used for maximization."""
return self._acquisition_function
@acquisition_function.setter
def acquisition_function(self, acquisition_function: AbstractAcquisitionFunction) -> None:
self._acquisition_function = acquisition_function
@property
def meta(self) -> dict[str, Any]:
"""Return the meta-data of the created object."""
acquisition_function_meta = None
if self._acquisition_function is not None:
acquisition_function_meta = self._acquisition_function.meta
return {
"name": self.__class__.__name__,
"acquisition_function": acquisition_function_meta,
"challengers": self._challengers,
"seed": self._seed,
}
[docs]
def maximize(
self,
previous_configs: list[Configuration],
n_points: int | None = None,
random_design: AbstractRandomDesign | None = None,
) -> Iterator[Configuration]:
"""Maximize acquisition function using `_maximize`, implemented by a subclass.
Parameters
----------
previous_configs: list[Configuration]
Previous evaluated configurations.
n_points: int, defaults to None
Number of points to be sampled & number of configurations to be returned. If `n_points` is not specified,
`self._challengers` is used. Semantics depend on concrete implementation.
random_design: AbstractRandomDesign, defaults to None
Part of the returned ChallengerList such that we can interleave random configurations
by a scheme defined by the random design. The method `random_design.next_iteration()`
is called at the end of this function.
Returns
-------
challengers : Iterator[Configuration]
An iterable consisting of configurations.
"""
if n_points is None:
n_points = self._challengers
def next_configs_by_acquisition_value() -> list[Configuration]:
assert n_points is not None
# since maximize returns a tuple of acquisition value and configuration,
# and we only need the configuration, we return the second element of the tuple
# for each element in the list
return [t[1] for t in self._maximize(previous_configs, n_points)]
challengers = ChallengerList(
self._configspace,
next_configs_by_acquisition_value,
random_design,
)
if random_design is not None:
random_design.next_iteration()
return challengers
@abstractmethod
def _maximize(
self,
previous_configs: list[Configuration],
n_points: int,
) -> list[tuple[float, Configuration]]:
"""Implement acquisition function maximization.
In contrast to `maximize`, this method returns an iterable of tuples, consisting of the acquisition function
value and the configuration. This allows to plug together different acquisition function maximizers.
Parameters
----------
previous_configs: list[Configuration]
Previously evaluated configurations.
n_points: int
Number of points to be sampled.
Returns
-------
challengers : list[tuple[float, Configuration]]
A list consisting of tuples of acquisition_value and its configuration.
"""
raise NotImplementedError()
def _sort_by_acquisition_value(self, configs: list[Configuration]) -> list[tuple[float, Configuration]]:
"""Sort the given configurations by the acquisition value.
Parameters
----------
configs : list[Configuration]
Returns
-------
challengers : list[tuple[float, Configuration]]
Candidates ordered by their acquisition value (descending).
"""
assert self._acquisition_function is not None
acq_values = self._acquisition_function(configs)
# From here
# http://stackoverflow.com/questions/20197990/how-to-make-argsort-result-to-be-random-between-equal-values
random = self._rng.rand(len(acq_values))
# Last column is primary sort key!
indices = np.lexsort((random.flatten(), acq_values.flatten()))
# Cannot use zip here because the indices array cannot index the
# rand_configs list, because the second is a pure python list
return [(acq_values[ind][0], configs[ind]) for ind in indices[::-1]]