Source code for smac.acquisition.maximizer.abstract_acqusition_maximizer

from __future__ import annotations

from abc import abstractmethod
from typing import Any, Iterator

import numpy as np
from ConfigSpace import Configuration, ConfigurationSpace

from smac.acquisition.function.abstract_acquisition_function import (
    AbstractAcquisitionFunction,
)
from smac.acquisition.maximizer.helpers import ChallengerList
from smac.random_design.abstract_random_design import AbstractRandomDesign
from smac.utils.logging import get_logger

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"

logger = get_logger(__name__)


[docs] class AbstractAcquisitionMaximizer: """Abstract class for the acquisition maximization. In order to use this class it has to be subclassed and the method `_maximize` must be implemented. Parameters ---------- configspace : ConfigurationSpace acquisition_function : AbstractAcquisitionFunction challengers : int, defaults to 5000 Number of configurations sampled during the optimization process, details depend on the used maximizer. Also, the number of configurations that is returned by calling `maximize`. seed : int, defaults to 0 """ def __init__( self, configspace: ConfigurationSpace, acquisition_function: AbstractAcquisitionFunction | None = None, challengers: int = 5000, seed: int = 0, ): self._configspace = configspace self._acquisition_function = acquisition_function self._challengers = challengers self._seed = seed self._rng = np.random.RandomState(seed=seed) @property def acquisition_function(self) -> AbstractAcquisitionFunction | None: """The acquisition function used for maximization.""" return self._acquisition_function @acquisition_function.setter def acquisition_function(self, acquisition_function: AbstractAcquisitionFunction) -> None: self._acquisition_function = acquisition_function @property def meta(self) -> dict[str, Any]: """Return the meta-data of the created object.""" acquisition_function_meta = None if self._acquisition_function is not None: acquisition_function_meta = self._acquisition_function.meta return { "name": self.__class__.__name__, "acquisition_function": acquisition_function_meta, "challengers": self._challengers, "seed": self._seed, }
[docs] def maximize( self, previous_configs: list[Configuration], n_points: int | None = None, random_design: AbstractRandomDesign | None = None, ) -> Iterator[Configuration]: """Maximize acquisition function using `_maximize`, implemented by a subclass. Parameters ---------- previous_configs: list[Configuration] Previous evaluated configurations. n_points: int, defaults to None Number of points to be sampled & number of configurations to be returned. If `n_points` is not specified, `self._challengers` is used. Semantics depend on concrete implementation. random_design: AbstractRandomDesign, defaults to None Part of the returned ChallengerList such that we can interleave random configurations by a scheme defined by the random design. The method `random_design.next_iteration()` is called at the end of this function. Returns ------- challengers : Iterator[Configuration] An iterable consisting of configurations. """ if n_points is None: n_points = self._challengers def next_configs_by_acquisition_value() -> list[Configuration]: assert n_points is not None # since maximize returns a tuple of acquisition value and configuration, # and we only need the configuration, we return the second element of the tuple # for each element in the list return [t[1] for t in self._maximize(previous_configs, n_points)] challengers = ChallengerList( self._configspace, next_configs_by_acquisition_value, random_design, ) if random_design is not None: random_design.next_iteration() return challengers
@abstractmethod def _maximize( self, previous_configs: list[Configuration], n_points: int, ) -> list[tuple[float, Configuration]]: """Implement acquisition function maximization. In contrast to `maximize`, this method returns an iterable of tuples, consisting of the acquisition function value and the configuration. This allows to plug together different acquisition function maximizers. Parameters ---------- previous_configs: list[Configuration] Previously evaluated configurations. n_points: int Number of points to be sampled. Returns ------- challengers : list[tuple[float, Configuration]] A list consisting of tuples of acquisition_value and its configuration. """ raise NotImplementedError() def _sort_by_acquisition_value(self, configs: list[Configuration]) -> list[tuple[float, Configuration]]: """Sort the given configurations by the acquisition value. Parameters ---------- configs : list[Configuration] Returns ------- challengers : list[tuple[float, Configuration]] Candidates ordered by their acquisition value (descending). """ assert self._acquisition_function is not None acq_values = self._acquisition_function(configs) # From here # http://stackoverflow.com/questions/20197990/how-to-make-argsort-result-to-be-random-between-equal-values random = self._rng.rand(len(acq_values)) # Last column is primary sort key! indices = np.lexsort((random.flatten(), acq_values.flatten())) # Cannot use zip here because the indices array cannot index the # rand_configs list, because the second is a pure python list return [(acq_values[ind][0], configs[ind]) for ind in indices[::-1]]