Source code for smac.acquisition.function.prior_acqusition_function

from __future__ import annotations

from typing import Any

import numpy as np
from ConfigSpace import Configuration
from ConfigSpace.hyperparameters import FloatHyperparameter

from smac.acquisition.function.abstract_acquisition_function import (
    AbstractAcquisitionFunction,
)
from smac.acquisition.function.confidence_bound import LCB
from smac.acquisition.function.integrated_acquisition_function import (
    IntegratedAcquisitionFunction,
)
from smac.acquisition.function.thompson import TS
from smac.model.abstract_model import AbstractModel
from smac.model.random_forest.abstract_random_forest import AbstractRandomForest
from smac.utils.logging import get_logger

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"

logger = get_logger(__name__)


[docs] class PriorAcquisitionFunction(AbstractAcquisitionFunction): r"""Weight the acquisition function with a user-defined prior over the optimum. See "piBO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization" by Carl Hvarfner et al. [HSSL22]_ for further details. Parameters ---------- decay_beta: float Decay factor on the user prior. A solid default value for decay_beta (empirically founded) is ``scenario.n_trials`` / 10. prior_floor : float, defaults to 1e-12 Lowest possible value of the prior to ensure non-negativity for all values in the search space. discretize : bool, defaults to False Whether to discretize (bin) the densities for continous parameters. Triggered for Random Forest models and continous hyperparameters to avoid a pathological case where all Random Forest randomness is removed (RF surrogates require piecewise constant acquisition functions to be well-behaved). discrete_bins_factor : float, defaults to 10.0 If discretizing, the multiple on the number of allowed bins for each parameter. """ def __init__( self, acquisition_function: AbstractAcquisitionFunction, decay_beta: float, prior_floor: float = 1e-12, discretize: bool = False, discrete_bins_factor: float = 10.0, ): super().__init__() self._acquisition_function: AbstractAcquisitionFunction = acquisition_function self._functions: list[AbstractAcquisitionFunction] = [] self._eta: float | None = None self._hyperparameters: dict[Any, Configuration] | None = None self._decay_beta = decay_beta self._prior_floor = prior_floor self._discretize = discretize self._discrete_bins_factor = discrete_bins_factor # check if the acquisition function is LCB or TS - then the acquisition function values # need to be rescaled to assure positiveness & correct magnitude if isinstance(self._acquisition_function, IntegratedAcquisitionFunction): acquisition_type = self._acquisition_function._acquisition_function else: acquisition_type = self._acquisition_function self._rescale = isinstance(acquisition_type, (LCB, TS)) self._iteration_number = 0 @property def name(self) -> str: # noqa: D102 return f"Prior Acquisition Function ({self._acquisition_function.__class__.__name__})" @property def meta(self) -> dict[str, Any]: # noqa: D102 meta = super().meta meta.update( { "acquisition_function": self._acquisition_function.meta, "decay_beta": self._decay_beta, "prior_floor": self._prior_floor, "discretize": self._discretize, "discrete_bins_factor": self._discrete_bins_factor, } ) return meta @property def model(self) -> AbstractModel | None: # noqa: D102 return self._model @model.setter def model(self, model: AbstractModel) -> None: self._model = model self._hyperparameters = model._configspace.get_hyperparameters_dict() if isinstance(model, AbstractRandomForest): if not self._discretize: logger.warning("Discretizing the prior for random forest models.") self._discretize = True def _update(self, **kwargs: Any) -> None: """Update the acquisition function attributes required for calculation. Parameters ---------- eta : float Current incumbent value. """ assert "eta" in kwargs self._iteration_number += 1 self._eta = kwargs["eta"] assert self.model is not None self._acquisition_function.update(model=self.model, **kwargs) def _compute_prior(self, X: np.ndarray) -> np.ndarray: """Compute the prior-weighted acquisition function values, where the prior on each parameter is multiplied by a decay factor controlled by the parameter decay_beta and the iteration number. Multivariate priors are not supported, for now. Parameters ---------- X: np.ndarray [N, D] The input points where the user-specified prior should be evaluated. The dimensionality of X is (N, D), with N as the number of points to evaluate at and D is the number of dimensions of one X. Returns ------- np.ndarray [N, 1] The user prior over the optimum for values of X. """ assert self._hyperparameters is not None prior_values = np.ones((len(X), 1)) # iterate over the hyperparmeters (alphabetically sorted) and the columns, which come # in the same order for parameter, X_col in zip(self._hyperparameters.values(), X.T): if self._discretize and isinstance(parameter, FloatHyperparameter): assert self._discrete_bins_factor is not None number_of_bins = int(np.ceil(self._discrete_bins_factor * self._decay_beta / self._iteration_number)) prior_values *= self._compute_discretized_pdf(parameter, X_col, number_of_bins) + self._prior_floor else: prior_values *= parameter._pdf(X_col[:, np.newaxis]) return prior_values def _compute_discretized_pdf( self, hyperparameter: FloatHyperparameter, X_col: np.ndarray, number_of_bins: int, ) -> np.ndarray: """Discretize (bins) prior values on continous a specific continous parameter to an increasingly coarse discretization determined by the prior decay parameter. Parameters ---------- hyperparameter : FloatHyperparameter A float hyperparameter that, due to using a random forest surrogate, must have its prior discretized. X_col: np.ndarray [N, ] The input points where the acquisition function should be evaluated. The dimensionality of X is (N, ), with N as the number of points to evaluate for the specific hyperparameter. number_of_bins : int The number of unique values allowed on the discretized version of the pdf. Returns ------- np.ndarray [N, 1] The user prior over the optimum for the parameter at hand. """ # Evaluates the actual pdf on all the relevant points pdf_values = hyperparameter._pdf(X_col[:, np.newaxis]) # Retrieves the largest value of the pdf in the domain lower, upper = (0, hyperparameter.get_max_density()) # Creates the bins (the possible discrete options of the pdf) bin_values = np.linspace(lower, upper, number_of_bins) # Generates an index (bin) for each evaluated point bin_indices = np.clip( np.round((pdf_values - lower) * number_of_bins / (upper - lower)), 0, number_of_bins - 1 ).astype(int) # Gets the actual value for each point prior_values = bin_values[bin_indices] return prior_values def _compute(self, X: np.ndarray) -> np.ndarray: """Compute the prior-weighted acquisition function values, where the prior on each parameter is multiplied by a decay factor controlled by the parameter decay_beta and the iteration number. Multivariate priors are not supported, for now. Parameters ---------- X: np.ndarray [N, D] The input points where the acquisition function should be evaluated. The dimensionality of X is (N, D), with N as the number of points to evaluate at and D is the number of dimensions of one X. Returns ------- np.ndarray [N, 1] Prior-weighted acquisition function values of X """ if self._rescale: # for TS and UCB, we need to scale the function values to not run into issues # of negative values or issues of varying magnitudes (here, they are both) # negative by design and just flipping the sign leads to picking the worst point) acq_values = np.clip(self._acquisition_function._compute(X) + self._eta, 0, np.inf) else: acq_values = self._acquisition_function._compute(X) prior_values = self._compute_prior(X) + self._prior_floor decayed_prior_values = np.power(prior_values, self._decay_beta / self._iteration_number) return acq_values * decayed_prior_values