Note
Go to the end to download the full example code or to run this example in your browser via Binder
Custom Callback¶
Using callbacks is the easieast way to integrate custom code inside the Bayesian optimization loop. In this example, we disable SMAC’s default logging option and use the custom callback to log the evaluated trials. Furthermore, we print some stages of the optimization process.
Let's start!
Evaluated 10 trials so far.
/home/runner/work/SMAC3/SMAC3/examples/1_basics/4_callback.py:57: DeprecationWarning: `Configuration` act's like a dictionary. Please use `dict(config)` instead of `get_dictionary` if you explicitly need a `dict`
print(f"Current incumbent: {incumbent.get_dictionary()}")
Current incumbent: {'x0': -0.9968221839517355, 'x1': 4.30847043171525}
Current incumbent value: 1102.7877872130716
Evaluated 20 trials so far.
Current incumbent: {'x0': -0.9968221839517355, 'x1': 4.30847043171525}
Current incumbent value: 1102.7877872130716
Evaluated 30 trials so far.
Current incumbent: {'x0': -0.9968221839517355, 'x1': 4.30847043171525}
Current incumbent value: 1102.7877872130716
Evaluated 40 trials so far.
Current incumbent: {'x0': -0.9968221839517355, 'x1': 4.30847043171525}
Current incumbent value: 1102.7877872130716
Evaluated 50 trials so far.
Current incumbent: {'x0': 0.03135360777378082, 'x1': -0.21179260686039925}
Current incumbent value: 5.465623793958126
We just triggered to stop the optimization after 50 finished trials.
from __future__ import annotations
from ConfigSpace import Configuration, ConfigurationSpace, Float
import smac
from smac import Callback
from smac import HyperparameterOptimizationFacade as HPOFacade
from smac import Scenario
from smac.runhistory import TrialInfo, TrialValue
__copyright__ = "Copyright 2021, AutoML.org Freiburg-Hannover"
__license__ = "3-clause BSD"
class Rosenbrock2D:
@property
def configspace(self) -> ConfigurationSpace:
cs = ConfigurationSpace(seed=0)
x0 = Float("x0", (-5, 10), default=-3)
x1 = Float("x1", (-5, 10), default=-4)
cs.add_hyperparameters([x0, x1])
return cs
def train(self, config: Configuration, seed: int = 0) -> float:
x1 = config["x0"]
x2 = config["x1"]
cost = 100.0 * (x2 - x1**2.0) ** 2.0 + (1 - x1) ** 2.0
return cost
class CustomCallback(Callback):
def __init__(self) -> None:
self.trials_counter = 0
def on_start(self, smbo: smac.main.smbo.SMBO) -> None:
print("Let's start!")
print("")
def on_tell_end(self, smbo: smac.main.smbo.SMBO, info: TrialInfo, value: TrialValue) -> bool | None:
self.trials_counter += 1
if self.trials_counter % 10 == 0:
print(f"Evaluated {self.trials_counter} trials so far.")
incumbent = smbo.intensifier.get_incumbent()
assert incumbent is not None
print(f"Current incumbent: {incumbent.get_dictionary()}")
print(f"Current incumbent value: {smbo.runhistory.get_cost(incumbent)}")
print("")
if self.trials_counter == 50:
print(f"We just triggered to stop the optimization after {smbo.runhistory.finished} finished trials.")
return False
return None
if __name__ == "__main__":
model = Rosenbrock2D()
# Scenario object specifying the optimization "environment"
scenario = Scenario(model.configspace, n_trials=200)
# Now we use SMAC to find the best hyperparameters
HPOFacade(
scenario,
model.train,
overwrite=True,
callbacks=[CustomCallback()],
logging_level=999999,
).optimize()
Total running time of the script: ( 0 minutes 0.154 seconds)