from __future__ import annotations
from typing import Any
import time
from subprocess import PIPE, Popen
from ConfigSpace import Configuration
from smac.runner.abstract_runner import StatusType
from smac.runner.abstract_serial_runner import AbstractSerialRunner
from smac.scenario import Scenario
from smac.utils.logging import get_logger
__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"
logger = get_logger(__name__)
[docs]class TargetFunctionScriptRunner(AbstractSerialRunner):
"""Class to execute target functions from scripts. Uses `Popen` to execute the script in a subprocess.
The following example shows how the script is called:
``target_function --instance=test --instance_features=test --seed=0 --hyperparameter1=5323``
The script must return an echo in the following form (white-spaces are removed):
``cost=0.5; runtime=0.01; status=SUCCESS; additional_info=test`` (single-objective)
``cost=0.5, 0.4; runtime=0.01; status=SUCCESS; additional_info=test`` (multi-objective)
The status must be a string and must be one of the ``StatusType`` values. However, ``runtime``, ``status`` and
``additional_info`` are optional.
Note
----
Everytime an instance is passed, also an instance feature in form of a comma-separated list (no spaces) of floats is
passed. If no instance feature for the instance is given, an empty list is passed.
Parameters
----------
target_function : Callable
The target function function.
scenario : Scenario
required_arguments : list[str]
A list of required arguments, which are passed to the target function.
"""
def __init__(
self,
target_function: str,
scenario: Scenario,
required_arguments: list[str] = [],
):
super().__init__(scenario=scenario, required_arguments=required_arguments)
self._target_function = target_function
# Check if target function is callable
if not isinstance(self._target_function, str):
raise TypeError(
"Argument `target_function` must be a string but is type" f"`{type(self._target_function)}`."
)
if self._scenario.trial_memory_limit is not None:
logger.warning("Trial memory limit is not supported for script target functions.")
if self._scenario.trial_walltime_limit is not None:
logger.warning("Trial walltime limit is not supported for script target functions.")
@property
def meta(self) -> dict[str, Any]: # noqa: D102
meta = super().meta
meta.update({"filename": str(self._target_function)})
return meta
[docs] def run(
self,
config: Configuration,
instance: str | None = None,
budget: float | None = None,
seed: int | None = None,
) -> tuple[StatusType, float | list[float], float, dict]:
"""Calls the target function.
Parameters
----------
config : Configuration
Configuration to be passed to the target function.
instance : str | None, defaults to None
The Problem instance.
budget : float | None, defaults to None
A positive, real-valued number representing an arbitrary limit to the target function handled by the
target function internally.
seed : int, defaults to None
Returns
-------
status : StatusType
Status of the trial.
cost : float | list[float]
Resulting cost(s) of the trial.
runtime : float
The time the target function function took to run.
additional_info : dict
All further additional trial information.
"""
# The kwargs are passed to the target function.
kwargs: dict[str, Any] = {}
if "seed" in self._required_arguments:
kwargs["seed"] = seed
if "instance" in self._required_arguments:
kwargs["instance"] = instance
# In contrast to the normal target function runner, we also add the instance features here.
if self._scenario.instance_features is not None and instance in self._scenario.instance_features:
kwargs["instance_features"] = self._scenario.instance_features[instance]
else:
kwargs["instance_features"] = []
if "budget" in self._required_arguments:
kwargs["budget"] = budget
# Presetting
cost: float | list[float] = self._crash_cost
runtime = 0.0
additional_info = {}
status = StatusType.SUCCESS
# Add config arguments to the kwargs
for k, v in config.get_dictionary().items():
if k in kwargs:
raise RuntimeError(f"The key {k} is already in use. Please use a different one.")
kwargs[k] = v
# Call target function
start_time = time.time()
output, error = self(kwargs)
runtime = time.time() - start_time
# Now we have to parse the std output
# First remove white-spaces
output = output.replace(" ", "")
outputs = {}
for pair in output.split(";"):
try:
kv = pair.split("=")
k, v = kv[0], kv[1]
# Get rid of the trailing newline
v = v.strip()
outputs[k] = v
except Exception:
pass
# Parse status
if "status" in outputs:
status = getattr(StatusType, outputs["status"])
# Parse costs (depends on the number of objectives)
if "cost" in outputs:
if self._n_objectives == 1:
cost = float(outputs["cost"])
else:
costs = outputs["cost"].split(",")
costs = [float(c) for c in costs]
cost = costs
if len(costs) != self._n_objectives:
raise RuntimeError("The number of costs does not match the number of objectives.")
else:
status = StatusType.CRASHED
# Overwrite runtime
if "runtime" in outputs:
runtime = float(outputs["runtime"])
# Add additional info
if "additional_info" in outputs:
additional_info["additional_info"] = outputs["additional_info"]
if status != StatusType.SUCCESS:
additional_info["error"] = error
if cost != self._crash_cost:
cost = self._crash_cost
logger.info(
"The target function crashed but returned a cost. The cost is ignored and replaced by crash cost."
)
return status, cost, runtime, additional_info
[docs] def __call__(
self,
algorithm_kwargs: dict[str, Any],
) -> tuple[str, str]:
"""Calls the algorithm, which is processed in the ``run`` method."""
cmd = [self._target_function]
for k, v in algorithm_kwargs.items():
v = str(v)
k = str(k)
# Let's remove some spaces
v = v.replace(" ", "")
cmd += [f"--{k}={v}"]
logger.debug(f"Calling: {' '.join(cmd)}")
p = Popen(cmd, shell=False, stdout=PIPE, stderr=PIPE, universal_newlines=True)
output, error = p.communicate()
logger.debug("Stdout: %s" % output)
logger.debug("Stderr: %s" % error)
return output, error