Source code for smac.runner.target_function_script_runner

from __future__ import annotations

from typing import Any

import time
from subprocess import PIPE, Popen

from ConfigSpace import Configuration

from smac.runner.abstract_runner import StatusType
from smac.runner.abstract_serial_runner import AbstractSerialRunner
from smac.scenario import Scenario
from smac.utils.logging import get_logger

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"

logger = get_logger(__name__)


[docs]class TargetFunctionScriptRunner(AbstractSerialRunner): """Class to execute target functions from scripts. Uses `Popen` to execute the script in a subprocess. The following example shows how the script is called: ``target_function --instance=test --instance_features=test --seed=0 --hyperparameter1=5323`` The script must return an echo in the following form (white-spaces are removed): ``cost=0.5; runtime=0.01; status=SUCCESS; additional_info=test`` (single-objective) ``cost=0.5, 0.4; runtime=0.01; status=SUCCESS; additional_info=test`` (multi-objective) The status must be a string and must be one of the ``StatusType`` values. However, ``runtime``, ``status`` and ``additional_info`` are optional. Note ---- Everytime an instance is passed, also an instance feature in form of a comma-separated list (no spaces) of floats is passed. If no instance feature for the instance is given, an empty list is passed. Parameters ---------- target_function : Callable The target function function. scenario : Scenario required_arguments : list[str] A list of required arguments, which are passed to the target function. """ def __init__( self, target_function: str, scenario: Scenario, required_arguments: list[str] = [], ): super().__init__(scenario=scenario, required_arguments=required_arguments) self._target_function = target_function # Check if target function is callable if not isinstance(self._target_function, str): raise TypeError( "Argument `target_function` must be a string but is type" f"`{type(self._target_function)}`." ) if self._scenario.trial_memory_limit is not None: logger.warning("Trial memory limit is not supported for script target functions.") if self._scenario.trial_walltime_limit is not None: logger.warning("Trial walltime limit is not supported for script target functions.") @property def meta(self) -> dict[str, Any]: # noqa: D102 meta = super().meta meta.update({"filename": str(self._target_function)}) return meta
[docs] def run( self, config: Configuration, instance: str | None = None, budget: float | None = None, seed: int | None = None, ) -> tuple[StatusType, float | list[float], float, dict]: """Calls the target function. Parameters ---------- config : Configuration Configuration to be passed to the target function. instance : str | None, defaults to None The Problem instance. budget : float | None, defaults to None A positive, real-valued number representing an arbitrary limit to the target function handled by the target function internally. seed : int, defaults to None Returns ------- status : StatusType Status of the trial. cost : float | list[float] Resulting cost(s) of the trial. runtime : float The time the target function function took to run. additional_info : dict All further additional trial information. """ # The kwargs are passed to the target function. kwargs: dict[str, Any] = {} if "seed" in self._required_arguments: kwargs["seed"] = seed if "instance" in self._required_arguments: kwargs["instance"] = instance # In contrast to the normal target function runner, we also add the instance features here. if self._scenario.instance_features is not None and instance in self._scenario.instance_features: kwargs["instance_features"] = self._scenario.instance_features[instance] else: kwargs["instance_features"] = [] if "budget" in self._required_arguments: kwargs["budget"] = budget # Presetting cost: float | list[float] = self._crash_cost runtime = 0.0 additional_info = {} status = StatusType.SUCCESS # Add config arguments to the kwargs for k, v in config.get_dictionary().items(): if k in kwargs: raise RuntimeError(f"The key {k} is already in use. Please use a different one.") kwargs[k] = v # Call target function start_time = time.time() output, error = self(kwargs) runtime = time.time() - start_time # Now we have to parse the std output # First remove white-spaces output = output.replace(" ", "") outputs = {} for pair in output.split(";"): try: kv = pair.split("=") k, v = kv[0], kv[1] # Get rid of the trailing newline v = v.strip() outputs[k] = v except Exception: pass # Parse status if "status" in outputs: status = getattr(StatusType, outputs["status"]) # Parse costs (depends on the number of objectives) if "cost" in outputs: if self._n_objectives == 1: cost = float(outputs["cost"]) else: costs = outputs["cost"].split(",") costs = [float(c) for c in costs] cost = costs if len(costs) != self._n_objectives: raise RuntimeError("The number of costs does not match the number of objectives.") else: status = StatusType.CRASHED # Overwrite runtime if "runtime" in outputs: runtime = float(outputs["runtime"]) # Add additional info if "additional_info" in outputs: additional_info["additional_info"] = outputs["additional_info"] if status != StatusType.SUCCESS: additional_info["error"] = error if cost != self._crash_cost: cost = self._crash_cost logger.info( "The target function crashed but returned a cost. The cost is ignored and replaced by crash cost." ) return status, cost, runtime, additional_info
[docs] def __call__( self, algorithm_kwargs: dict[str, Any], ) -> tuple[str, str]: """Calls the algorithm, which is processed in the ``run`` method.""" cmd = [self._target_function] for k, v in algorithm_kwargs.items(): v = str(v) k = str(k) # Let's remove some spaces v = v.replace(" ", "") cmd += [f"--{k}={v}"] logger.debug(f"Calling: {' '.join(cmd)}") p = Popen(cmd, shell=False, stdout=PIPE, stderr=PIPE, universal_newlines=True) output, error = p.communicate() logger.debug("Stdout: %s" % output) logger.debug("Stderr: %s" % error) return output, error