smac.acquisition.function.prior_acqusition_function¶
Classes¶
|
Weights the acquisition function with a user-defined prior over the optimum. |
Interfaces¶
- class smac.acquisition.function.prior_acqusition_function.PriorAcquisitionFunction(acquisition_function, decay_beta, prior_floor=1e-12, discretize=False, discrete_bins_factor=10.0)[source]¶
Bases:
AbstractAcquisitionFunction
Weights the acquisition function with a user-defined prior over the optimum.
See “piBO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization” by Carl Hvarfner et al. [HSSL22] for further details.
- Parameters:
decay_beta (float) – Decay factor on the user prior. A solid default value for decay_beta (empirically founded) is
scenario.n_trials
/ 10.prior_floor (float, defaults to 1e-12) – Lowest possible value of the prior to ensure non-negativity for all values in the search space.
discretize (bool, defaults to False) – Whether to discretize (bin) the densities for continous parameters. Triggered for Random Forest models and continous hyperparameters to avoid a pathological case where all Random Forest randomness is removed (RF surrogates require piecewise constant acquisition functions to be well-behaved).
discrete_bins_factor (float, defaults to 10.0) – If discretizing, the multiple on the number of allowed bins for each parameter.
- property meta: dict[str, Any]¶
Returns the meta data of the created object.
- Return type:
dict
[str
,Any
]
- property model: smac.model.abstract_model.AbstractModel | None¶
Returns the used surrogate model in the acquisition function.
- Return type:
Optional
[AbstractModel
]
- property name: str¶
Returns the full name of the acquisition function.
- Return type:
str