from __future__ import annotations
from typing import Mapping
import numpy as np
from smac.runhistory.encoder import AbstractRunHistoryEncoder
from smac.runhistory.runhistory import RunHistory, TrialKey, TrialValue
from smac.utils.configspace import convert_configurations_to_array
from smac.utils.logging import get_logger
from smac.utils.multi_objective import normalize_costs
__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"
logger = get_logger(__name__)
[docs]class RunHistoryEIPSEncoder(AbstractRunHistoryEncoder):
"""Encoder specifically for the EIPS acquisition function."""
def _build_matrix(
self,
trials: Mapping[TrialKey, TrialValue],
runhistory: RunHistory,
store_statistics: bool = False,
) -> tuple[np.ndarray, np.ndarray]:
if store_statistics:
# store_statistics is currently not necessary
pass
# First build nan-matrix of size #configs x #params+1
n_rows = len(trials)
n_cols = self._n_params
X = np.ones([n_rows, n_cols + self._n_features]) * np.nan
y = np.ones([n_rows, 2])
# Then populate matrix
for row, (key, run) in enumerate(trials.items()):
# Scaling is automatically done in configSpace
conf = runhistory.ids_config[key.config_id]
conf_vector = convert_configurations_to_array([conf])[0]
if self._n_features > 0 and self._instance_features is not None:
assert isinstance(key.instance, str)
feats = self._instance_features[key.instance]
X[row, :] = np.hstack((conf_vector, feats))
else:
X[row, :] = conf_vector
if self._n_objectives > 1:
assert self._multi_objective_algorithm is not None
assert isinstance(run.cost, list)
# Let's normalize y here
# We use the objective_bounds calculated by the runhistory
y_ = normalize_costs(run.cost, runhistory.objective_bounds)
y_agg = self._multi_objective_algorithm(y_)
y[row, 0] = y_agg
else:
y[row, 0] = run.cost
y[row, 1] = run.time
y_transformed = self.transform_response_values(values=y)
return X, y_transformed
[docs] def transform_response_values(self, values: np.ndarray) -> np.ndarray:
"""Transform function response values. Transform the runtimes by a log transformation
(log(1.
+ runtime).
Parameters
----------
values : np.ndarray
Response values to be transformed.
Returns
-------
np.ndarray
"""
# We need to ensure that time remains positive after the log transform.
values[:, 1] = np.log(1 + values[:, 1])
return values