from __future__ import annotations
from typing import Any
import numpy as np
from smac.multi_objective.abstract_multi_objective_algorithm import (
AbstractMultiObjectiveAlgorithm,
)
from smac.scenario import Scenario
[docs]class MeanAggregationStrategy(AbstractMultiObjectiveAlgorithm):
"""A class to mean-aggregate multi-objective costs to a single cost.
Parameters
----------
scenario : Scenario
objective_weights : list[float] | None, defaults to None
Weights for an weighted average. Must be of the same length as the number of objectives.
"""
def __init__(
self,
scenario: Scenario,
objective_weights: list[float] | None = None,
):
super(MeanAggregationStrategy, self).__init__()
if objective_weights is not None and scenario.count_objectives() != len(objective_weights):
raise ValueError("Number of objectives and number of weights must be equal.")
self._objective_weights = objective_weights
@property
def meta(self) -> dict[str, Any]:
"""Returns the meta data of the created object."""
return {
"name": self.__class__.__name__,
"objective_weights": self._objective_weights,
}
[docs] def __call__(self, values: list[float]) -> float: # noqa: D102
return float(np.average(values, axis=0, weights=self._objective_weights))