Source code for smac.facade.abstract_facade

from __future__ import annotations

from abc import abstractmethod
from typing import Any, Callable, Iterator

from pathlib import Path

import joblib
from ConfigSpace import Configuration

import smac
from smac.acquisition.function.abstract_acquisition_function import (
    AbstractAcquisitionFunction,
)
from smac.acquisition.maximizer.abstract_acqusition_maximizer import (
    AbstractAcquisitionMaximizer,
)
from smac.callback import Callback
from smac.initial_design.abstract_initial_design import AbstractInitialDesign
from smac.intensifier.abstract_intensifier import AbstractIntensifier
from smac.main import SMBO
from smac.model.abstract_model import AbstractModel
from smac.multi_objective.abstract_multi_objective_algorithm import (
    AbstractMultiObjectiveAlgorithm,
)
from smac.random_design.abstract_random_design import AbstractRandomDesign
from smac.runhistory.dataclasses import TrialInfo, TrialValue
from smac.runhistory.encoder.abstract_encoder import AbstractRunHistoryEncoder
from smac.runhistory.enumerations import TrialInfoIntent
from smac.runhistory.runhistory import RunHistory
from smac.runner.abstract_runner import AbstractRunner
from smac.runner.dask_runner import DaskParallelRunner
from smac.runner.target_function_runner import TargetFunctionRunner
from smac.runner.target_function_script_runner import TargetFunctionScriptRunner
from smac.scenario import Scenario
from smac.stats import Stats
from smac.utils.logging import get_logger, setup_logging

logger = get_logger(__name__)

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"


[docs]class AbstractFacade: """Facade is an abstraction on top of the SMBO backend to organize the components of a Bayesian Optimization loop in a configurable and separable manner to suit the various needs of different (hyperparameter) optimization pipelines. With the exception to scenario and ``target_function``, which are expected of the user, the parameters ``model``, ``acquisition_function``, ``acquisition_maximizer``, ``initial_design``, ``random_design``, ``intensifier``, ``multi_objective_algorithm``, ``runhistory_encoder`` can either be explicitly specified in the subclasses' ``get_*`` methods (defining a specific BO pipeline) or be instantiated by the user to overwrite a pipelines components explicitly. Parameters ---------- scenario : Scenario The scenario object, holding all environmental information. target_function : Callable | str | AbstractRunner This function is called internally to judge a trial's performance. If a string is passed, it is assumed to be a script. In this case, ``TargetFunctionScriptRunner`` is used to run the script. model : AbstractModel | None, defaults to None The surrogate model. acquisition_function : AbstractAcquisitionFunction | None, defaults to None The acquisition function. acquisition_maximizer : AbstractAcquisitionMaximizer | None, defaults to None The acquisition maximizer, deciding which configuration is most promising based on the surrogate model and acquisition function. initial_design : InitialDesign | None, defaults to None The sampled configurations from the initial design are evaluated before the Bayesian optimization loop starts. random_design : RandomDesign | None, defaults to None The random design is used in the acquisition maximier, deciding whether the next configuration should be drawn from the acquisition function or randomly. intensifier : AbstractIntensifier | None, defaults to None The intensifier decides which trial (combination of configuration, seed, budget and instance) should be run next. multi_objective_algorithm : AbstractMultiObjectiveAlgorithm | None, defaults to None In case of multiple objectives, the objectives need to be interpreted so that an optimization is possible. The multi objective algorithm takes care of that. runhistory_encoder : RunHistoryEncoder | None, defaults to None Based on the runhistory, the surrogate model is trained. However, the data first needs to be encoded, which is done by the runhistory encoder. For example, inactive hyperparameters need to be encoded or cost values can be log transformed. logging_level: int | Path | None The level of logging (the lowest level 0 indicates the debug level). If a path is passed, a yaml file is expected with the logging configuration. If nothing is passed, the default logging.yml from SMAC is used. callbacks: list[Callback], defaults to [] Callbacks, which are incorporated into the optimization loop. overwrite: bool, defaults to False When True, overwrites the run results if a previous run is found that is inconsistent in the meta data with the current setup. If ``overwrite`` is set to False, the user is asked for the exact behaviour (overwrite completely, save old run, or use old results). """ def __init__( self, scenario: Scenario, target_function: Callable | str | AbstractRunner, *, model: AbstractModel | None = None, acquisition_function: AbstractAcquisitionFunction | None = None, acquisition_maximizer: AbstractAcquisitionMaximizer | None = None, initial_design: AbstractInitialDesign | None = None, random_design: AbstractRandomDesign | None = None, intensifier: AbstractIntensifier | None = None, multi_objective_algorithm: AbstractMultiObjectiveAlgorithm | None = None, runhistory_encoder: AbstractRunHistoryEncoder | None = None, logging_level: int | Path | None = None, callbacks: list[Callback] = [], overwrite: bool = False, ): setup_logging(logging_level) if model is None: model = self.get_model(scenario) if acquisition_function is None: acquisition_function = self.get_acquisition_function(scenario) if acquisition_maximizer is None: acquisition_maximizer = self.get_acquisition_maximizer(scenario) if initial_design is None: initial_design = self.get_initial_design(scenario) if random_design is None: random_design = self.get_random_design(scenario) if intensifier is None: intensifier = self.get_intensifier(scenario) if multi_objective_algorithm is None and scenario.count_objectives() > 1: multi_objective_algorithm = self.get_multi_objective_algorithm(scenario=scenario) if runhistory_encoder is None: runhistory_encoder = self.get_runhistory_encoder(scenario) # Initialize empty stats and runhistory object runhistory = RunHistory(multi_objective_algorithm=multi_objective_algorithm) stats = Stats(scenario) # Set the seed for configuration space scenario.configspace.seed(scenario.seed) # Set variables globally self._scenario = scenario self._model = model self._acquisition_function = acquisition_function self._acquisition_maximizer = acquisition_maximizer self._initial_design = initial_design self._random_design = random_design self._intensifier = intensifier self._multi_objective_algorithm = multi_objective_algorithm self._runhistory = runhistory self._runhistory_encoder = runhistory_encoder self._stats = stats self._overwrite = overwrite # Prepare the algorithm executer runner: AbstractRunner if isinstance(target_function, AbstractRunner): runner = target_function elif isinstance(target_function, str): runner = TargetFunctionScriptRunner( scenario=scenario, target_function=target_function, required_arguments=self._get_signature_arguments(), ) else: runner = TargetFunctionRunner( scenario=scenario, target_function=target_function, required_arguments=self._get_signature_arguments(), ) # In case of multiple jobs, we need to wrap the runner again using DaskParallelRunner if (n_workers := scenario.n_workers) > 1: available_workers = joblib.cpu_count() if n_workers > available_workers: logger.info(f"Workers are reduced to {n_workers}.") n_workers = available_workers # We use a dask runner for parallelization runner = DaskParallelRunner(single_worker=runner) # Set the runner to access it globally self._runner = runner # Adding dependencies of the components self._update_dependencies() # We have to update our meta data (basically arguments of the components) self._scenario._set_meta(self.meta) # We have to validate if the object compositions are correct and actually make sense self._validate() # Finally we configure our optimizer self._optimizer = self._get_optimizer() assert self._optimizer # Register callbacks here for callback in callbacks: self._optimizer._register_callback(callback) @property def scenario(self) -> Scenario: """The scenario object.""" return self._scenario @property def runhistory(self) -> RunHistory: """The run history, which is filled with all information during the optimization process.""" return self._optimizer._runhistory @property def stats(self) -> Stats: """The stats object, which is updated during the optimization and shows relevant information, e.g., how many trials have been finished and how the trajectory looks like. """ return self._optimizer._stats @property def incumbent(self) -> Configuration | None: """The best configuration so far.""" return self._optimizer._incumbent @property def meta(self) -> dict[str, Any]: """Generates a hash based on all components of the facade. This is used for the run name or to determine whether a run should be continued or not. """ multi_objective_algorithm_meta = None if self._multi_objective_algorithm is not None: multi_objective_algorithm_meta = self._multi_objective_algorithm.meta meta = { "facade": {"name": self.__class__.__name__}, "runner": self._runner.meta, "model": self._model.meta, "acquisition_maximizer": self._acquisition_maximizer.meta, "acquisition_function": self._acquisition_function.meta, "intensifier": self._intensifier.meta, "initial_design": self._initial_design.meta, "random_design": self._random_design.meta, "runhistory_encoder": self._runhistory_encoder.meta, "multi_objective_algorithm": multi_objective_algorithm_meta, "version": smac.version, } return meta
[docs] def get_target_function_seeds(self) -> list[int]: """Which seeds are used to call the target function.""" return self._intensifier.get_target_function_seeds()
[docs] def get_target_function_budgets(self) -> list[float | None]: """Which budgets are used to call the target function.""" return self._intensifier.get_target_function_budgets()
[docs] def get_target_function_instances(self) -> list[str | None]: """Which instances are used to call the target function.""" return self._intensifier.get_target_function_instances()
[docs] def get_next_configurations(self) -> Iterator[Configuration]: """Choose next candidate solution with Bayesian optimization. The suggested configurations depend on the surrogate model acquisition optimizer/function. This method is used by the intensifier. """ return self._optimizer.get_next_configurations()
[docs] def ask(self) -> TrialInfo: """Asks the intensifier for the next trial. This method returns only trials with the intend to run. """ counter = 0 while True: if counter > 10: logger.warning("It seems like SMAC only finds trials with the intent to skip/wait.") counter = 0 intend, info = self._optimizer.ask() # We only accept trials which are intented to run if intend != TrialInfoIntent.RUN: counter += 1 continue counter = 0 return info
[docs] def tell(self, info: TrialInfo, value: TrialValue, save: bool = True) -> None: """Adds the result of a trial to the runhistory and updates the intensifier. Also, the stats object is updated. Parameters ---------- info: TrialInfo Describes the trial from which to process the results. value: TrialValue Contains relevant information regarding the execution of a trial. save : bool, optional to True Whether the runhistory should be saved. """ return self._optimizer.tell(info, value, time_left=None, save=save)
[docs] def optimize(self) -> Configuration: """ Optimizes the algorithm. Returns ------- incumbent : Configuration Best found configuration. """ incumbent = None try: incumbent = self._optimizer.optimize() finally: self._optimizer.save() self._stats.print() if incumbent is not None: cost = self._runhistory.get_cost(incumbent) logger.info(f"Final Incumbent: {incumbent.get_dictionary()}") logger.info(f"Estimated cost: {cost}") return incumbent
[docs] def validate( self, config: Configuration, *, instances: list[str] | None = None, seed: int | None = None, ) -> float | list[float]: """Validates a configuration with different seeds than in the optimization process and on the highest budget (if budget type is real-valued). Parameters ---------- config : Configuration Configuration to validate instances : list[str] | None, defaults to None Which instances to validate. If None, all instances specified in the scenario are used. In case that the budget type is real-valued budget, this argument is ignored. seed : int | None, defaults to None If None, the seed from the scenario is used. Returns ------- cost : float | list[float] The averaged cost of the configuration. In case of multi-fidelity, the cost of each objective is averaged. """ return self._optimizer.validate(config, instances=instances, seed=seed)
[docs] @staticmethod @abstractmethod def get_model(scenario: Scenario) -> AbstractModel: """Returns the surrogate cost model instance used in the BO loop.""" raise NotImplementedError
[docs] @staticmethod @abstractmethod def get_acquisition_function(scenario: Scenario) -> AbstractAcquisitionFunction: """Returns the acquisition function instance used in the BO loop, defining the exploration/exploitation trade-off. """ raise NotImplementedError
[docs] @staticmethod @abstractmethod def get_acquisition_maximizer(scenario: Scenario) -> AbstractAcquisitionMaximizer: """Returns the acquisition optimizer instance to be used in the BO loop, specifying how the acquisition function instance is optimized. """ raise NotImplementedError
[docs] @staticmethod @abstractmethod def get_intensifier(scenario: Scenario) -> AbstractIntensifier: """Returns the intensifier instance to be used in the BO loop, specifying how to challenge the incumbent configuration on other problem instances. """ raise NotImplementedError
[docs] @staticmethod @abstractmethod def get_initial_design(scenario: Scenario) -> AbstractInitialDesign: """Returns an instance of the initial design class to be used in the BO loop, specifying how the configurations the BO loop is 'warm-started' with are selected. """ raise NotImplementedError
[docs] @staticmethod @abstractmethod def get_random_design(scenario: Scenario) -> AbstractRandomDesign: """Returns an instance of the random design class to be used in the BO loop, specifying how to interleave the BO iterations with randomly selected configurations. """ raise NotImplementedError
[docs] @staticmethod @abstractmethod def get_runhistory_encoder(scenario: Scenario) -> AbstractRunHistoryEncoder: """Returns an instance of the runhistory encoder class to be used in the Bayesian optimization loop, specifying how the runhistory is to be prepared for the next surrogate model. """ raise NotImplementedError
[docs] @staticmethod @abstractmethod def get_multi_objective_algorithm(scenario: Scenario) -> AbstractMultiObjectiveAlgorithm: """Returns the multi-objective algorithm instance to be used in the Bayesian optimization loop, specifying the scalarization strategy for multiple objectives' costs """ raise NotImplementedError
def _get_optimizer(self) -> SMBO: """Fills the SMBO with all the pre-initialized components.""" return SMBO( scenario=self._scenario, stats=self._stats, runner=self._runner, initial_design=self._initial_design, runhistory=self._runhistory, runhistory_encoder=self._runhistory_encoder, intensifier=self._intensifier, model=self._model, acquisition_function=self._acquisition_function, acquisition_maximizer=self._acquisition_maximizer, random_design=self._random_design, overwrite=self._overwrite, ) def _update_dependencies(self) -> None: """Convenience method to add some more dependencies. And ensure separable instantiation of the components. This is the easiest way to incorporate dependencies, although it might be a bit hacky. """ self._intensifier._stats = self._stats self._runhistory_encoder.multi_objective_algorithm = self._multi_objective_algorithm self._acquisition_function.model = self._model self._acquisition_maximizer.acquisition_function = self._acquisition_function def _validate(self) -> None: """Checks if the composition is correct if there are dependencies, not necessarily.""" # Make sure the same acquisition function is used assert self._acquisition_function == self._acquisition_maximizer._acquisition_function def _get_signature_arguments(self) -> list[str]: """Returns signature arguments, which are required by the intensifier.""" arguments = [] if self._intensifier.uses_seeds: arguments += ["seed"] if self._intensifier.uses_budgets: arguments += ["budget"] if self._intensifier.uses_instances: arguments += ["instance"] return arguments