Source code for smac.acquisition.function.thompson

from __future__ import annotations

import numpy as np

from smac.acquisition.function.abstract_acquisition_function import (
    AbstractAcquisitionFunction,
)
from smac.utils.logging import get_logger

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"

logger = get_logger(__name__)


[docs]class TS(AbstractAcquisitionFunction): r"""Do a Thompson Sampling for a given x over the best so far value as acquisition value. Warning ------- Thompson Sampling can only be used together with `RandomSearch`. Please do not use `LocalAndSortedRandomSearch` to optimize the TS acquisition function! :math:`TS(X) ~ \mathcal{N}(\mu(\mathbf{X}),\sigma(\mathbf{X}))' Returns -TS(X) as the acquisition_function optimizer maximizes the acquisition value. Parameters ---------- xi : float, defaults to 0.0 TS does not require xi here, we only wants to make it consistent with other acquisition functions. """ @property def name(self) -> str: # noqa: D102 return "Thompson Sampling" def _compute(self, X: np.ndarray) -> np.ndarray: """Sample a new value from a gaussian distribution whose mean and covariance values are given by model. Parameters ---------- X: np.ndarray [N, D] Points to be evaluated where we could sample a value. N is the number of points and D the dimension for the points. Returns ------- np.ndarray [N, 1] Negative sample value of X. """ assert self._model if len(X.shape) == 1: X = X[:, np.newaxis] sample_function = getattr(self._model, "sample_functions", None) if callable(sample_function): return -sample_function(X, n_funcs=1) m, var_ = self._model.predict_marginalized(X) rng = self._model._rng m = m.flatten() var_ = np.diag(var_.flatten()) return -rng.multivariate_normal(m, var_, 1).T