Source code for smac.model.gaussian_process.mcmc_gaussian_process

from __future__ import annotations

from typing import Any, Optional, TypeVar, cast

import logging
import warnings
from copy import deepcopy

import emcee
import numpy as np
from ConfigSpace import ConfigurationSpace
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Kernel

from smac.model.gaussian_process.abstract_gaussian_process import (
    AbstractGaussianProcess,
)
from smac.model.gaussian_process.gaussian_process import GaussianProcess
from smac.model.gaussian_process.priors.abstract_prior import AbstractPrior

__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"


logger = logging.getLogger(__name__)
Self = TypeVar("Self", bound="MCMCGaussianProcess")


[docs] class MCMCGaussianProcess(AbstractGaussianProcess): """Implementation of a Gaussian process model which out-integrates its hyperparameters by Markow-Chain-Monte-Carlo (MCMC). If you use this class make sure that you also use an integrated acquisition function to integrate over the GP's hyperparameter as proposed by Snoek et al. This code is based on the implementation of RoBO: Klein, A. and Falkner, S. and Mansur, N. and Hutter, F. RoBO: A Flexible and Robust Bayesian Optimization Framework in Python In: NIPS 2017 Bayesian Optimization Workshop Parameters ---------- configspace : ConfigurationSpace kernel : Kernel Kernel which is used for the Gaussian process. n_mcmc_walkers : int, defaults to 20 The number of hyperparameter samples. This also determines the number of walker for MCMC sampling as each walker will return one hyperparameter sample. chain_length : int, defaults to 50 The length of the MCMC chain. We start `n_mcmc_walkers` walker for `chain_length` steps, and we use the last sample in the chain as a hyperparameter sample. burning_steps : int, defaults to 50 The number of burning steps before the actual MCMC sampling starts. mcmc_sampler : str, defaults to "emcee" Choose a self-tuning MCMC sampler. Can be either ``emcee`` or ``nuts``. normalize_y : bool, defaults to True Zero mean unit variance normalization of the output values. instance_features : dict[str, list[int | float]] | None, defaults to None Features (list of int or floats) of the instances (str). The features are incorporated into the X data, on which the model is trained on. pca_components : float, defaults to 7 Number of components to keep when using PCA to reduce dimensionality of instance features. seed : int """ def __init__( self, configspace: ConfigurationSpace, kernel: Kernel, n_mcmc_walkers: int = 20, chain_length: int = 50, burning_steps: int = 50, mcmc_sampler: str = "emcee", average_samples: bool = False, normalize_y: bool = True, instance_features: dict[str, list[int | float]] | None = None, pca_components: int | None = 7, seed: int = 0, ): if mcmc_sampler not in ["emcee", "nuts"]: raise ValueError(f"MCMC Gaussian process does not support the sampler `{mcmc_sampler}`.") super().__init__( configspace=configspace, kernel=kernel, instance_features=instance_features, pca_components=pca_components, seed=seed, ) self._n_mcmc_walkers = n_mcmc_walkers self._chain_length = chain_length self._burning_steps = burning_steps self._models: list[GaussianProcess] = [] self._normalize_y = normalize_y self._mcmc_sampler = mcmc_sampler self._average_samples = average_samples self._set_has_conditions() # Internal statistics self._n_ll_evals = 0 self._burned = False self._is_trained = False self._samples: np.ndarray | None = None @property def meta(self) -> dict[str, Any]: # noqa: D102 meta = super().meta meta.update( { "n_mcmc_walkers": self._n_mcmc_walkers, "chain_length": self._chain_length, "burning_steps": self._burning_steps, "mcmc_sampler": self._mcmc_sampler, "average_samples": self._average_samples, "normalize_y": self._normalize_y, } ) return meta @property def models(self) -> list[GaussianProcess]: """Returns the internally used gaussian processes.""" return self._models def _train( self: Self, X: np.ndarray, y: np.ndarray, optimize_hyperparameters: bool = True, ) -> Self: """Performs MCMC sampling to sample hyperparameter configurations from the likelihood and trains for each sample a Gaussian process on X and y. Parameters ---------- X : np.ndarray [#samples, #hyperparameters + #features] Input data points. Y : np.ndarray [#samples, #objectives] The corresponding target values. optimize_hyperparameters: boolean If set to true, we perform MCMC sampling. Otherwise, we just use the hyperparameter specified in the kernel. """ X = self._impute_inactive(X) if self._normalize_y: # A note on normalization for the Gaussian process with MCMC: # Scikit-learn uses a different "normalization" than we use in SMAC3. Scikit-learn normalizes the data to # have zero mean, while we normalize it to have zero mean unit variance. To make sure the scikit-learn GP # behaves the same when we use it directly or indirectly (through the gaussian_process.py file), we # normalize the data here. Then, after the individual GPs are fit, we inject the statistics into them, so # they unnormalize the data at prediction time. y = self._normalize(y) self._gp = self._get_gaussian_process() if optimize_hyperparameters: self._gp.fit(X, y) self._all_priors = self._get_all_priors( add_bound_priors=True, add_soft_bounds=True if self._mcmc_sampler == "nuts" else False, ) if self._mcmc_sampler == "emcee": sampler = emcee.EnsembleSampler(self._n_mcmc_walkers, len(self._kernel.theta), self._ll) sampler.random_state = self._rng.get_state() # Do a burn-in in the first iteration if not self._burned: # Initialize the walkers by sampling from the prior dim_samples = [] prior: AbstractPrior | list[AbstractPrior] | None = None for dim, prior in enumerate(self._all_priors): # Always sample from the first prior if isinstance(prior, list): if len(prior) == 0: prior = None else: prior = prior[0] prior = cast(Optional[AbstractPrior], prior) if prior is None: raise NotImplementedError() else: dim_samples.append(prior.sample_from_prior(self._n_mcmc_walkers).flatten()) self.p0 = np.vstack(dim_samples).transpose() # Run MCMC sampling with warnings.catch_warnings(): warnings.filterwarnings("ignore", r"invalid value encountered in double_scalars.*") self.p0, _, _ = sampler.run_mcmc(self.p0, self._burning_steps) self.burned = True # Start sampling & save the current position, it will be the start point in the next iteration with warnings.catch_warnings(): warnings.filterwarnings("ignore", r"invalid value encountered in double_scalars.*") self.p0, _, _ = sampler.run_mcmc(self.p0, self._chain_length) # Take the last samples from each walker self._samples = sampler.get_chain()[-1] elif self._mcmc_sampler == "nuts": # Originally published as: # http://www.stat.columbia.edu/~gelman/research/published/nuts.pdf # A good explanation of HMC: # https://theclevermachine.wordpress.com/2012/11/18/mcmc-hamiltonian-monte-carlo-a-k-a-hybrid-monte-carlo/ # A good explanation of HMC and NUTS can be found in: # https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12681 # Do not require the installation of NUTS for SMAC # This requires NUTS from https://github.com/mfeurer/NUTS import nuts.nuts # type: ignore # Perform initial fit to the data to obtain theta0 if not self.burned: theta0 = self._gp.kernel.theta self._burned = True else: theta0 = self.p0 samples, _, _ = nuts.nuts.nuts6( f=self._ll_w_grad, Madapt=self._burning_steps, M=self._chain_length, theta0=theta0, # Increasing this value results in longer running times delta=0.5, adapt_mass=False, # Rather low max depth to keep the number of required gradient steps low max_depth=10, rng=self._rng, ) indices = [int(np.rint(ind)) for ind in np.linspace(start=0, stop=len(samples) - 1, num=10)] self._samples = samples[indices] assert self._samples is not None self.p0 = self._samples.mean(axis=0) else: raise ValueError(self._mcmc_sampler) if self._average_samples: assert self._samples is not None self._samples = [self._samples.mean(axis=0)] # type: ignore else: self._samples = self._gp.kernel.theta self._samples = [self._samples] # type: ignore self._models = [] assert self._samples is not None for sample in self._samples: if (sample < -50).any(): sample[sample < -50] = -50 if (sample > 50).any(): sample[sample > 50] = 50 # Instantiate a GP for each hyperparameter configuration kernel = deepcopy(self._kernel) kernel.theta = sample model = GaussianProcess( configspace=self._configspace, kernel=kernel, normalize_y=False, seed=self._rng.randint(low=0, high=10000), ) try: model._train(X, y, optimize_hyperparameters=False) self._models.append(model) except np.linalg.LinAlgError: pass if len(self._models) == 0: kernel = deepcopy(self._kernel) kernel.theta = self.p0 model = GaussianProcess( configspace=self._configspace, kernel=kernel, normalize_y=False, seed=self._rng.randint(low=0, high=10000), ) model._train(X, y, optimize_hyperparameters=False) self._models.append(model) if self._normalize_y: # Inject the normalization statistics into the individual models. Setting normalize_y to True makes the # individual GPs unnormalize the data at predict time. for model in self._models: model._normalize_y = True model.mean_y_ = self.mean_y_ model.std_y_ = self.std_y_ self._is_trained = True return self def _get_gaussian_process(self) -> GaussianProcessRegressor: return GaussianProcessRegressor( kernel=self._kernel, normalize_y=False, # We do not use scikit-learn's normalize routine optimizer=None, n_restarts_optimizer=0, # We do not use scikit-learn's optimization routine alpha=0, # Governed by the kernel random_state=self._rng, ) def _ll(self, theta: np.ndarray) -> float: """Returns the marginal log likelihood (+ the prior) for a hyperparameter configuration theta. Parameters ---------- theta : np.ndarray Hyperparameter vector. Note that all hyperparameters are on a log scale. """ self._n_ll_evals += 1 # Bound the hyperparameter space to keep things sane. Note that all # hyperparameters live on a log scale. if (theta < -50).any(): theta[theta < -50] = -50 if (theta > 50).any(): theta[theta > 50] = 50 try: lml = self._gp.log_marginal_likelihood(theta) except ValueError: return -np.inf # Add prior for dim, priors in enumerate(self._all_priors): for prior in priors: lml += prior.get_log_probability(theta[dim]) if not np.isfinite(lml): return -np.inf else: return lml def _ll_w_grad(self, theta: np.ndarray) -> tuple[float, np.ndarray]: """Returns the marginal log likelihood (+ the prior) for a hyperparameter configuration theta. Parameters ---------- theta : np.ndarray Hyperparameter vector. Note that all hyperparameter are on a log scale. """ self._n_ll_evals += 1 # Bound the hyperparameter space to keep things sane. Note that all hyperparameters live on a log scale. if (theta < -50).any(): theta[theta < -50] = -50 if (theta > 50).any(): theta[theta > 50] = 50 lml = 0.0 grad = np.zeros(theta.shape) # Add prior for dim, priors in enumerate(self._all_priors): for prior in priors: lml += prior.get_log_probability(theta[dim]) grad[dim] += prior.get_gradient(theta[dim]) # Check if one of the priors is invalid, if so, no need to compute the log marginal likelihood if lml < -1e24: return -1e25, np.zeros(theta.shape) try: lml_, grad_ = self._gp.log_marginal_likelihood(theta, eval_gradient=True) lml += lml_ grad += grad_ except ValueError: return -1e25, np.zeros(theta.shape) # We add a minus here because scipy is minimizing if not np.isfinite(lml) or (~np.isfinite(grad)).any(): return -1e25, np.zeros(theta.shape) else: return lml, grad def _predict( self, X: np.ndarray, covariance_type: str | None = "diagonal", ) -> tuple[np.ndarray, np.ndarray | None]: r""" Returns the predictive mean and variance of the objective function at X averaged over all hyperparameter samples. The mean is computed by: :math \mu(x) = \frac{1}{M}\sum_{i=1}^{M}\mu_m(x) And the variance by: :math \sigma^2(x) = (\frac{1}{M}\sum_{i=1}^{M}(\sigma^2_m(x) + \mu_m(x)^2) - \mu^2 """ if not self._is_trained: raise Exception("Model has to be trained first!") if covariance_type != "diagonal": raise ValueError("`covariance_type` can only take `diagonal` for this model.") X_test = self._impute_inactive(X) mu = np.zeros([len(self._models), X_test.shape[0]]) var = np.zeros([len(self._models), X_test.shape[0]]) for i, model in enumerate(self._models): mu_tmp, var_tmp = model.predict(X_test) assert var_tmp is not None mu[i] = mu_tmp.flatten() var[i] = var_tmp.flatten() m = mu.mean(axis=0) # See the Algorithm Runtime Prediction paper by Hutter et al. # for the derivation of the total variance v = np.var(mu, axis=0) + np.mean(var, axis=0) # Clip negative variances and set them to the smallest # positive float value if v.shape[0] == 1: v = np.clip(v, np.finfo(v.dtype).eps, np.inf) else: v = np.clip(v, np.finfo(v.dtype).eps, np.inf) v[np.where((v < np.finfo(v.dtype).eps) & (v > -np.finfo(v.dtype).eps))] = 0 return m, v