from __future__ import annotations
import hashlib
import logging
from functools import partial
import numpy as np
from ConfigSpace import Configuration, ConfigurationSpace
from ConfigSpace.hyperparameters import (
BetaFloatHyperparameter,
BetaIntegerHyperparameter,
CategoricalHyperparameter,
Constant,
NormalFloatHyperparameter,
NormalIntegerHyperparameter,
OrdinalHyperparameter,
UniformFloatHyperparameter,
UniformIntegerHyperparameter,
)
from ConfigSpace.util import get_one_exchange_neighbourhood
__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"
get_one_exchange_neighbourhood = partial(get_one_exchange_neighbourhood, stdev=0.05, num_neighbors=8)
[docs]def convert_configurations_to_array(configs: list[Configuration]) -> np.ndarray:
"""Impute inactive hyperparameters in configurations with their default.
Parameters
----------
configs : List[Configuration]
List of configuration objects.
Returns
-------
np.ndarray
"""
return np.array([config.get_array() for config in configs], dtype=np.float64)
[docs]def get_types(
configspace: ConfigurationSpace,
instance_features: dict[str, list[float]] | None = None,
) -> tuple[list[int], list[tuple[float, float]]]:
"""Return the types of the hyperparameters and the bounds of the
hyperparameters and instance features.
Warning
-------
The bounds for the instance features are *not* added in this function.
"""
# Extract types vector for rf from config space and the bounds
types = [0] * len(configspace.get_hyperparameters())
bounds = [(np.nan, np.nan)] * len(types)
for i, param in enumerate(configspace.get_hyperparameters()):
parents = configspace.get_parents_of(param.name)
if len(parents) == 0:
can_be_inactive = False
else:
can_be_inactive = True
if isinstance(param, (CategoricalHyperparameter)):
n_cats = len(param.choices)
if can_be_inactive:
n_cats = len(param.choices) + 1
types[i] = n_cats
bounds[i] = (int(n_cats), np.nan)
elif isinstance(param, (OrdinalHyperparameter)):
n_cats = len(param.sequence)
types[i] = 0
if can_be_inactive:
bounds[i] = (0, int(n_cats))
else:
bounds[i] = (0, int(n_cats) - 1)
elif isinstance(param, Constant):
# For constants we simply set types to 0 which makes it a numerical parameter
if can_be_inactive:
bounds[i] = (2, np.nan)
types[i] = 2
else:
bounds[i] = (0, np.nan)
types[i] = 0
# and we leave the bounds to be 0 for now
elif isinstance(param, UniformFloatHyperparameter):
# Are sampled on the unit hypercube thus the bounds
# are always 0.0, 1.0
if can_be_inactive:
bounds[i] = (-1.0, 1.0)
else:
bounds[i] = (0, 1.0)
elif isinstance(param, UniformIntegerHyperparameter):
if can_be_inactive:
bounds[i] = (-1.0, 1.0)
else:
bounds[i] = (0, 1.0)
elif isinstance(param, NormalFloatHyperparameter):
if can_be_inactive:
raise ValueError("Inactive parameters not supported for Beta and Normal Hyperparameters")
bounds[i] = (param._lower, param._upper)
elif isinstance(param, NormalIntegerHyperparameter):
if can_be_inactive:
raise ValueError("Inactive parameters not supported for Beta and Normal Hyperparameters")
bounds[i] = (param.nfhp._lower, param.nfhp._upper)
elif isinstance(param, BetaFloatHyperparameter):
if can_be_inactive:
raise ValueError("Inactive parameters not supported for Beta and Normal Hyperparameters")
bounds[i] = (param._lower, param._upper)
elif isinstance(param, BetaIntegerHyperparameter):
if can_be_inactive:
raise ValueError("Inactive parameters not supported for Beta and Normal Hyperparameters")
bounds[i] = (param.bfhp._lower, param.bfhp._upper)
elif not isinstance(
param,
(
UniformFloatHyperparameter,
UniformIntegerHyperparameter,
OrdinalHyperparameter,
CategoricalHyperparameter,
NormalFloatHyperparameter,
NormalIntegerHyperparameter,
BetaFloatHyperparameter,
BetaIntegerHyperparameter,
),
):
raise TypeError("Unknown hyperparameter type %s" % type(param))
if instance_features is not None:
n_features = len(list(instance_features.values())[0])
types = types + [0] * n_features
return types, bounds
[docs]def get_conditional_hyperparameters(X: np.ndarray, Y: np.ndarray | None = None) -> np.ndarray:
"""Returns conditional hyperparameters if values with -1 or smaller are observed. X is used
if Y is not specified.
"""
# Taking care of conditional hyperparameters according to Levesque et al.
X_cond = X <= -1
if Y is not None:
Y_cond = Y <= -1
else:
Y_cond = X <= -1
active = ~((np.expand_dims(X_cond, axis=1) != Y_cond).any(axis=2))
return active
[docs]def get_config_hash(config: Configuration, chars: int = 6) -> str:
"""Returns a hash of the configuration."""
return hashlib.sha1(str(config).encode("utf-8")).hexdigest()[:chars]
[docs]def print_config_changes(
incumbent: Configuration | None,
challenger: Configuration | None,
logger: logging.Logger,
) -> None:
"""Compares two configurations and prints the differences."""
if incumbent is None or challenger is None:
return
params = sorted([(param, incumbent[param], challenger[param]) for param in challenger.keys()])
for param in params:
if param[1] != param[2]:
logger.info("--- %s: %r -> %r" % param)
else:
logger.debug("--- %s Remains unchanged: %r", param[0], param[1])
# def check_subspace_points(
# X: np.ndarray,
# cont_dims: np.ndarray | list = [],
# cat_dims: np.ndarray | list = [],
# bounds_cont: np.ndarray | None = None,
# bounds_cat: list[tuple] | None = None,
# expand_bound: bool = False,
# ) -> np.ndarray:
# """Check which points are place inside a given subspace.
# Parameters
# ----------
# X: Optional[np.ndarray(N,D)],
# points to be checked, where D = D_cont + D_cat
# cont_dims: Union[np.ndarray(D_cont), List]
# which dimensions represent continuous hyperparameters
# cat_dims: Union[np.ndarray(D_cat), List]
# which dimensions represent categorical hyperparameters
# bounds_cont: optional[List[Tuple]]
# subspaces bounds of categorical hyperparameters, its length is the number of continuous hyperparameters
# bounds_cat: Optional[List[Tuple]]
# subspaces bounds of continuous hyperparameters, its length is the number of categorical hyperparameters
# expand_bound: bool
# if the bound needs to be expanded to contain more points rather than the points inside the subregion
# Return
# ----------
# indices_in_ss:np.ndarray(N)
# indices of data that included in subspaces
# """
# if len(X.shape) == 1:
# X = X[np.newaxis, :]
# if len(cont_dims) == 0 and len(cat_dims) == 0:
# return np.ones(X.shape[0], dtype=bool)
# if len(cont_dims) > 0:
# if bounds_cont is None:
# raise ValueError("bounds_cont must be given if cont_dims provided")
# if len(bounds_cont.shape) != 2 or bounds_cont.shape[1] != 2 or bounds_cont.shape[0] != len(cont_dims):
# raise ValueError(
# f"bounds_cont (with shape {bounds_cont.shape}) should be an array with shape of"
# f"({len(cont_dims)}, 2)"
# )
# data_in_ss = np.all(X[:, cont_dims] <= bounds_cont[:, 1], axis=1) & np.all(
# X[:, cont_dims] >= bounds_cont[:, 0], axis=1
# )
# if expand_bound:
# bound_left = bounds_cont[:, 0] - np.min(X[data_in_ss][:, cont_dims] - bounds_cont[:, 0], axis=0)
# bound_right = bounds_cont[:, 1] + np.min(bounds_cont[:, 1] - X[data_in_ss][:, cont_dims], axis=0)
# data_in_ss = np.all(X[:, cont_dims] <= bound_right, axis=1) & np.all(X[:, cont_dims] >= bound_left,
# axis=1)
# else:
# data_in_ss = np.ones(X.shape[0], dtype=bool)
# if len(cat_dims) == 0:
# return data_in_ss
# if bounds_cat is None:
# raise ValueError("bounds_cat must be given if cat_dims provided")
# if len(bounds_cat) != len(cat_dims):
# raise ValueError(
# f"bounds_cat ({len(bounds_cat)}) and cat_dims ({len(cat_dims)}) must have " f"the same number of elements"
# )
# for bound_cat, cat_dim in zip(bounds_cat, cat_dims):
# data_in_ss &= np.in1d(X[:, cat_dim], bound_cat)
# return data_in_ss