from __future__ import annotations
import numpy as np
import sklearn.gaussian_process.kernels as kernels
from ConfigSpace import Configuration
from smac.acquisition.function.expected_improvement import EI
from smac.acquisition.maximizer.local_and_random_search import (
LocalAndSortedRandomSearch,
)
from smac.facade.abstract_facade import AbstractFacade
from smac.initial_design.sobol_design import SobolInitialDesign
from smac.intensifier.intensifier import Intensifier
from smac.model.gaussian_process.abstract_gaussian_process import (
AbstractGaussianProcess,
)
from smac.model.gaussian_process.gaussian_process import GaussianProcess
from smac.model.gaussian_process.kernels import (
ConstantKernel,
HammingKernel,
MaternKernel,
WhiteKernel,
)
from smac.model.gaussian_process.mcmc_gaussian_process import MCMCGaussianProcess
from smac.model.gaussian_process.priors import HorseshoePrior, LogNormalPrior
from smac.multi_objective.aggregation_strategy import MeanAggregationStrategy
from smac.random_design.probability_design import ProbabilityRandomDesign
from smac.runhistory.encoder.encoder import RunHistoryEncoder
from smac.scenario import Scenario
from smac.utils.configspace import get_types
__copyright__ = "Copyright 2022, automl.org"
__license__ = "3-clause BSD"
[docs]class BlackBoxFacade(AbstractFacade):
def _validate(self) -> None:
"""Ensure that the SMBO configuration with all its (updated) dependencies is valid."""
super()._validate()
# Activate predict incumbent
# self.solver.epm_chooser.predict_x_best = True
if self._scenario.instance_features is not None and len(self._scenario.instance_features) > 0:
raise NotImplementedError("The Black-Box GP cannot handle instances.")
if not isinstance(self._model, AbstractGaussianProcess):
raise ValueError("The Black-Box facade only works with Gaussian Processes")
[docs] @staticmethod
def get_model(
scenario: Scenario,
*,
model_type: str | None = None,
kernel: kernels.Kernel | None = None,
) -> AbstractGaussianProcess:
"""Returns a Gaussian Process surrogate model.
Parameters
----------
scenario : Scenario
model_type : str | None, defaults to None
Which Gaussian Process model should be chosen. Choose between `vanilla` and `mcmc`.
kernel : kernels.Kernel | None, defaults to None
The kernel used in the surrogate model.
Returns
-------
model : GaussianProcess | MCMCGaussianProcess
The instantiated gaussian process.
"""
available_model_types = [None, "vanilla", "mcmc"]
if model_type not in available_model_types:
types = [str(t) for t in available_model_types]
raise ValueError(f"The model_type `{model_type}` is not supported. Choose one of {', '.join(types)}")
if kernel is None:
kernel = BlackBoxFacade.get_kernel(scenario=scenario)
if model_type is None or model_type == "vanilla":
return GaussianProcess(
configspace=scenario.configspace,
kernel=kernel,
normalize_y=True,
seed=scenario.seed,
)
elif model_type == "mcmc":
n_mcmc_walkers = 3 * len(kernel.theta)
if n_mcmc_walkers % 2 == 1:
n_mcmc_walkers += 1
return MCMCGaussianProcess(
configspace=scenario.configspace,
kernel=kernel,
n_mcmc_walkers=n_mcmc_walkers,
chain_length=250,
burning_steps=250,
normalize_y=True,
seed=scenario.seed,
)
else:
raise ValueError("Unknown model type %s" % model_type)
[docs] @staticmethod
def get_kernel(scenario: Scenario) -> kernels.Kernel:
"""Returns a kernel for the Gaussian Process surrogate model.
The kernel is a composite of kernels depending on the type of hyperparameters:
categorical (HammingKernel), continuous (Matern), and noise kernels (White).
"""
types, _ = get_types(scenario.configspace, instance_features=None)
cont_dims = np.where(np.array(types) == 0)[0]
cat_dims = np.where(np.array(types) != 0)[0]
if (len(cont_dims) + len(cat_dims)) != len(scenario.configspace.get_hyperparameters()):
raise ValueError(
"The inferred number of continuous and categorical hyperparameters "
"must equal the total number of hyperparameters. Got "
f"{(len(cont_dims) + len(cat_dims))} != {len(scenario.configspace.get_hyperparameters())}."
)
# Constant Kernel
cov_amp = ConstantKernel(
2.0,
constant_value_bounds=(np.exp(-10), np.exp(2)),
prior=LogNormalPrior(
mean=0.0,
sigma=1.0,
seed=scenario.seed,
),
)
# Continuous / Categorical Kernels
exp_kernel, ham_kernel = 0.0, 0.0
if len(cont_dims) > 0:
exp_kernel = MaternKernel(
np.ones([len(cont_dims)]),
[(np.exp(-6.754111155189306), np.exp(0.0858637988771976)) for _ in range(len(cont_dims))],
nu=2.5,
operate_on=cont_dims,
)
if len(cat_dims) > 0:
ham_kernel = HammingKernel(
np.ones([len(cat_dims)]),
[(np.exp(-6.754111155189306), np.exp(0.0858637988771976)) for _ in range(len(cat_dims))],
operate_on=cat_dims,
)
# Noise Kernel
noise_kernel = WhiteKernel(
noise_level=1e-8,
noise_level_bounds=(np.exp(-25), np.exp(2)),
prior=HorseshoePrior(scale=0.1, seed=scenario.seed),
)
# Continuous and categecorical HPs
if len(cont_dims) > 0 and len(cat_dims) > 0:
kernel = cov_amp * (exp_kernel * ham_kernel) + noise_kernel
# Only continuous HPs
elif len(cont_dims) > 0 and len(cat_dims) == 0:
kernel = cov_amp * exp_kernel + noise_kernel
# Only categorical HPs
elif len(cont_dims) == 0 and len(cat_dims) > 0:
kernel = cov_amp * ham_kernel + noise_kernel
else:
raise ValueError("The number of continuous and categorical hyperparameters must be greater than zero.")
return kernel
[docs] @staticmethod
def get_acquisition_function( # type: ignore
scenario: Scenario,
*,
xi: float = 0.0,
) -> EI:
"""Returns an Expected Improvement acquisition function.
Parameters
----------
scenario : Scenario
xi : float, defaults to 0.0
Controls the balance between exploration and exploitation of the
acquisition function.
"""
return EI(xi=xi)
[docs] @staticmethod
def get_acquisition_maximizer( # type: ignore
scenario: Scenario,
*,
challengers: int = 1000,
local_search_iterations: int = 10,
) -> LocalAndSortedRandomSearch:
"""Returns local and sorted random search as acquisition maximizer.
Parameters
----------
challengers : int, defaults to 1000
Number of challengers.
local_search_iterations: int, defaults to 10
Number of local search iterations.
"""
return LocalAndSortedRandomSearch(
configspace=scenario.configspace,
challengers=challengers,
local_search_iterations=local_search_iterations,
seed=scenario.seed,
)
[docs] @staticmethod
def get_intensifier( # type: ignore
scenario: Scenario,
*,
max_config_calls: int = 3,
max_incumbents: int = 20,
) -> Intensifier:
"""Returns ``Intensifier`` as intensifier. Uses the default configuration for ``race_against``.
Parameters
----------
scenario : Scenario
max_config_calls : int, defaults to 3
Maximum number of configuration evaluations. Basically, how many instance-seed keys should be evaluated at
maximum for a configuration.
max_incumbents : int, defaults to 10
How many incumbents to keep track of in the case of multi-objective.
"""
return Intensifier(
scenario=scenario,
max_config_calls=max_config_calls,
max_incumbents=max_incumbents,
)
[docs] @staticmethod
def get_initial_design( # type: ignore
scenario: Scenario,
*,
n_configs: int | None = None,
n_configs_per_hyperparamter: int = 8,
max_ratio: float = 0.25,
additional_configs: list[Configuration] = [],
) -> SobolInitialDesign:
"""Returns a Sobol design instance.
Parameters
----------
scenario : Scenario
n_configs : int | None, defaults to None
Number of initial configurations (disables the arguments ``n_configs_per_hyperparameter``).
n_configs_per_hyperparameter: int, defaults to 8
Number of initial configurations per hyperparameter. For example, if my configuration space covers five
hyperparameters and ``n_configs_per_hyperparameter`` is set to 10, then 50 initial configurations will be
samples.
max_ratio: float, defaults to 0.25
Use at most ``scenario.n_trials`` * ``max_ratio`` number of configurations in the initial design.
Additional configurations are not affected by this parameter.
additional_configs: list[Configuration], defaults to []
Adds additional configurations to the initial design.
"""
return SobolInitialDesign(
scenario=scenario,
n_configs=n_configs,
n_configs_per_hyperparameter=n_configs_per_hyperparamter,
max_ratio=max_ratio,
additional_configs=additional_configs,
seed=scenario.seed,
)
[docs] @staticmethod
def get_random_design( # type: ignore
scenario: Scenario,
*,
probability: float = 0.08447232371720552,
) -> ProbabilityRandomDesign:
"""Returns ``ProbabilityRandomDesign`` for interleaving configurations.
Parameters
----------
probability : float, defaults to 0.08447232371720552
Probability that a configuration will be drawn at random.
"""
return ProbabilityRandomDesign(seed=scenario.seed, probability=probability)
[docs] @staticmethod
def get_multi_objective_algorithm( # type: ignore
scenario: Scenario,
*,
objective_weights: list[float] | None = None,
) -> MeanAggregationStrategy:
"""Returns the mean aggregation strategy for the multi-objective algorithm.
Parameters
----------
scenario : Scenario
objective_weights : list[float] | None, defaults to None
Weights for averaging the objectives in a weighted manner. Must be of the same length as the number of
objectives.
"""
return MeanAggregationStrategy(
scenario=scenario,
objective_weights=objective_weights,
)
[docs] @staticmethod
def get_runhistory_encoder(
scenario: Scenario,
) -> RunHistoryEncoder:
"""Returns the default runhistory encoder."""
return RunHistoryEncoder(scenario)