Support Vector Machine with Cross-Validation

An example of optimizing a simple support vector machine on the IRIS dataset. We use the hyperparameter optimization facade, which uses a random forest as its surrogate model. It is able to scale to higher evaluation budgets and a higher number of dimensions. Also, you can use mixed data types as well as conditional hyperparameters.

[INFO][] Using 5 initial design configurations and 0 additional configurations.
[INFO][] Added config eb23b4 as new incumbent because there are no incumbents yet.
[INFO][] Added config 60c7ff and rejected config eb23b4 as incumbent because it is not better than the incumbents on 2 instances:
[INFO][] --- C: 0.03992740880515713 -> 1.2760639488343621
[INFO][] --- kernel: 'rbf' -> 'linear'
[INFO][] --- shrinking: True -> False
[INFO][] Finished 50 trials.
[INFO][] Configuration budget is exhausted:
[INFO][] --- Remaining wallclock time: inf
[INFO][] --- Remaining cpu time: inf
[INFO][] --- Remaining trials: 0
Default cost: 0.03333333333333344
Incumbent cost: 0.013333333333333308

import numpy as np
from ConfigSpace import Categorical, Configuration, ConfigurationSpace, Float, Integer
from ConfigSpace.conditions import InCondition
from sklearn import datasets, svm
from sklearn.model_selection import cross_val_score

from smac import HyperparameterOptimizationFacade, Scenario

__copyright__ = "Copyright 2021, Freiburg-Hannover"
__license__ = "3-clause BSD"

# We load the iris-dataset (a widely used benchmark)
iris = datasets.load_iris()

class SVM:
    def configspace(self) -> ConfigurationSpace:
        # Build Configuration Space which defines all parameters and their ranges
        cs = ConfigurationSpace(seed=0)

        # First we create our hyperparameters
        kernel = Categorical("kernel", ["linear", "poly", "rbf", "sigmoid"], default="poly")
        C = Float("C", (0.001, 1000.0), default=1.0, log=True)
        shrinking = Categorical("shrinking", [True, False], default=True)
        degree = Integer("degree", (1, 5), default=3)
        coef = Float("coef0", (0.0, 10.0), default=0.0)
        gamma = Categorical("gamma", ["auto", "value"], default="auto")
        gamma_value = Float("gamma_value", (0.0001, 8.0), default=1.0, log=True)

        # Then we create dependencies
        use_degree = InCondition(child=degree, parent=kernel, values=["poly"])
        use_coef = InCondition(child=coef, parent=kernel, values=["poly", "sigmoid"])
        use_gamma = InCondition(child=gamma, parent=kernel, values=["rbf", "poly", "sigmoid"])
        use_gamma_value = InCondition(child=gamma_value, parent=gamma, values=["value"])

        # Add hyperparameters and conditions to our configspace
        cs.add_hyperparameters([kernel, C, shrinking, degree, coef, gamma, gamma_value])
        cs.add_conditions([use_degree, use_coef, use_gamma, use_gamma_value])

        return cs

    def train(self, config: Configuration, seed: int = 0) -> float:
        """Creates a SVM based on a configuration and evaluates it on the
        iris-dataset using cross-validation."""
        config_dict = config.get_dictionary()
        if "gamma" in config:
            config_dict["gamma"] = config_dict["gamma_value"] if config_dict["gamma"] == "value" else "auto"
            config_dict.pop("gamma_value", None)

        classifier = svm.SVC(**config_dict, random_state=seed)
        scores = cross_val_score(classifier,,, cv=5)
        cost = 1 - np.mean(scores)

        return cost

if __name__ == "__main__":
    classifier = SVM()

    # Next, we create an object, holding general information about the run
    scenario = Scenario(
        n_trials=50,  # We want to run max 50 trials (combination of config and seed)

    # We want to run the facade's default initial design, but we want to change the number
    # of initial configs to 5.
    initial_design = HyperparameterOptimizationFacade.get_initial_design(scenario, n_configs=5)

    # Now we use SMAC to find the best hyperparameters
    smac = HyperparameterOptimizationFacade(
        overwrite=True,  # If the run exists, we overwrite it; alternatively, we can continue from last state

    incumbent = smac.optimize()

    # Get cost of default configuration
    default_cost = smac.validate(classifier.configspace.get_default_configuration())
    print(f"Default cost: {default_cost}")

    # Let's calculate the cost of the incumbent
    incumbent_cost = smac.validate(incumbent)
    print(f"Incumbent cost: {incumbent_cost}")

Total running time of the script: ( 0 minutes 1.280 seconds)