Expert priors for hyperparameters
import logging
import time
from warnings import warn
import neps
def evaluate_pipeline(some_float, some_integer, some_cat):
start = time.time()
if some_cat != "a":
y = some_float + some_integer
else:
y = -some_float - some_integer
end = time.time()
return {
"objective_to_minimize": y,
"info_dict": {
"test_score": y,
"train_time": end - start,
},
}
# neps uses the default values and a confidence in this default value to construct a prior
# that speeds up the search
pipeline_space = dict(
some_float=neps.Float(
lower=1,
upper=1000,
log=True,
prior=900,
prior_confidence="medium",
),
some_integer=neps.Integer(
lower=0,
upper=50,
prior=35,
prior_confidence="low",
),
some_cat=neps.Categorical(
choices=["a", "b", "c"],
prior="a",
prior_confidence="high",
),
)
logging.basicConfig(level=logging.INFO)
neps.run(
evaluate_pipeline=evaluate_pipeline,
pipeline_space=pipeline_space,
root_directory="results/user_priors_example",
max_evaluations_total=15,
)