Logging additional info
import logging
import time
import numpy as np
import neps
def run_pipeline(float1, float2, categorical, integer1, integer2):
start = time.time()
loss = -float(np.sum([float1, float2, int(categorical), integer1, integer2]))
end = time.time()
return {
"loss": loss,
"info_dict": { # Optionally include additional information as an info_dict
"train_time": end - start,
},
}
pipeline_space = dict(
float1=neps.Float(lower=0, upper=1),
float2=neps.Float(lower=-10, upper=10),
categorical=neps.Categorical(choices=[0, 1]),
integer1=neps.Integer(lower=0, upper=1),
integer2=neps.Integer(lower=1, upper=1000, log=True),
)
logging.basicConfig(level=logging.INFO)
neps.run(
run_pipeline=run_pipeline,
pipeline_space=pipeline_space,
root_directory="results/logging_additional_info",
max_evaluations_total=5,
)