Hyperparameters
import logging
import numpy as np
import neps
def evaluate_pipeline(float1, float2, categorical, integer1, integer2):
objective_to_minimize = -float(
np.sum([float1, float2, int(categorical), integer1, integer2])
)
return objective_to_minimize
pipeline_space = dict(
float1=neps.Float(lower=0, upper=1),
float2=neps.Float(lower=-10, upper=10),
categorical=neps.Categorical(choices=[0, 1]),
integer1=neps.Integer(lower=0, upper=1),
integer2=neps.Integer(lower=1, upper=1000, log=True),
)
logging.basicConfig(level=logging.INFO)
neps.run(
evaluate_pipeline=evaluate_pipeline,
pipeline_space=pipeline_space,
root_directory="results/hyperparameters_example",
post_run_summary=True,
max_evaluations_total=15,
)