Skip to content

Roadmap#

Next up#

Features#

  • Improve large scale experience
    • Result saving function (Samir)
    • Priorband default sampling / pass evaluated configs to neps.run (Samir)
    • Document large scale
    • Evaluate and maybe improve ease-of-use of NePS for DDP (Gopalji)
  • Optimize dependencies (Anton)
  • Tensorboard st no one has to Touch it anymore (Tarek)

Fixes#

  • ignore_errors should work seamlessly with all optimizers, also check different error handling Flags (Gopalji)
  • Install all dependencies to run core examples always (Anton)

Refactoring#

(Anton)

  • Rename: run_pipeline = evaluate_pipeline
  • Rename: loss = objective_to_minimize
  • Rename: default = prior, default_confidence = prior_confidence
  • Rename: budget = max_cost_total

Documentation#

  • Update citations (also docs) (Danny)
  • Notebooks add (Danny)
  • Remove templates (Danny)
  • Rework readme (remove declarative API) (Danny)
  • Improved examples
    • New Lightning example (Gopalji)
    • DDP examples (Gopalji)
    • Larger examples (Gopalji)
    • Tensorboard into new lightning example (Tarek)
    • Example spawning cloud instances via run pipeline

Tests#

  • Pytest needs to work on a fresh install (Anton)
  • Regression tests to run on cluster on each version release

Before 1.0.0 version#

Features#

  • Utility neps.clean to manage existing run results
  • Generate pdf plot after each evaluation
  • Finegrained control over user prior
  • Print search space upon run
  • Utility to generate code for best architecture
  • Core algorithmic feature set (research)

Documentation#

  • NAS documentation
  • Optimizer pages (Anton, Neeratyoy)
  • Keep a changelog, add to it before each release