Initial design
make_initial_design
#
make_initial_design(
*,
parameters: Mapping[str, Parameter],
encoder: ConfigEncoder,
sampler: Literal["sobol", "prior", "uniform"] | Sampler,
sample_size: int | Literal["ndim"] | None = "ndim",
sample_prior_first: bool = True,
seed: Generator | None = None
) -> list[dict[str, Any]]
Generate the initial design of the optimization process.
PARAMETER | DESCRIPTION |
---|---|
space
|
The search space to use.
|
encoder
|
The encoder to use for encoding/decoding configurations.
TYPE:
|
sampler
|
The sampler to use for the initial design. If set to "sobol", a Sobol sequence will be used. If set to "uniform", a uniform random sampler will be used. If set to "prior", a prior sampler will be used, based on the defaults, and confidence scores of the hyperparameters. If set to a custom sampler, the sampler will be used directly. |
sample_size
|
The number of configurations to sample. If "ndim", the number of configs will be equal to the number of dimensions. If None, no configurations will be sampled. |
sample_prior_first
|
Whether to sample the prior configuration first.
TYPE:
|
seed
|
The seed to use for the random number generation.
TYPE:
|