Skip to content

plot3D

Plot a 3D landscape of learning curves for a given run.

Plotter3D dataclass #

Plotter3D(
    objective_to_minimize_key: str = "Objective to minimize",
    fidelity_key: str = "epochs",
    run_path: str | Path | None = None,
    scatter: bool = True,
    footnote: bool = True,
    alpha: float = 0.9,
    scatter_size: float | int = 3,
    bck_color_2d: tuple[float, float, float] = (
        0.8,
        0.82,
        0.8,
    ),
    view_angle: tuple[float, float] = (15, -70),
)

Plot a 3d landscape of learning curves for a given run.

get_color staticmethod #

get_color(df: DataFrame) -> ndarray

Get the color values for the plot.

Source code in neps/plot/plot3D.py
@staticmethod
def get_color(df: pd.DataFrame) -> np.ndarray:
    """Get the color values for the plot."""
    return df.index.to_numpy()  # type: ignore

get_x staticmethod #

get_x(df: DataFrame) -> ndarray

Get the x-axis values for the plot.

Source code in neps/plot/plot3D.py
@staticmethod
def get_x(df: pd.DataFrame) -> np.ndarray:
    """Get the x-axis values for the plot."""
    return df["epochID"].to_numpy()  # type: ignore

get_y staticmethod #

get_y(df: DataFrame) -> ndarray

Get the y-axis values for the plot.

Source code in neps/plot/plot3D.py
@staticmethod
def get_y(df: pd.DataFrame) -> np.ndarray:
    """Get the y-axis values for the plot."""
    y_ = df["configID"].to_numpy()
    return np.ones_like(y_) * y_[0]  # type: ignore

get_z staticmethod #

get_z(df: DataFrame) -> ndarray

Get the z-axis values for the plot.

Source code in neps/plot/plot3D.py
@staticmethod
def get_z(df: pd.DataFrame) -> np.ndarray:
    """Get the z-axis values for the plot."""
    return df["objective_to_minimize"].to_numpy()  # type: ignore

plot3D #

plot3D(
    data: DataFrame | None = None,
    save_path: str | Path | None = None,
    filename: str = "freeze_thaw",
) -> None

Plot the 3D landscape of learning curves.

Source code in neps/plot/plot3D.py
def plot3D(  # noqa: N802, PLR0915
    self,
    data: pd.DataFrame | None = None,
    save_path: str | Path | None = None,
    filename: str = "freeze_thaw",
) -> None:
    """Plot the 3D landscape of learning curves."""
    data = self.prep_df(data)

    # Create the figure and the axes for the plot
    fig, (ax3D, ax, cax) = plt.subplots(
        1, 3, figsize=(12, 5), width_ratios=(20, 20, 1)
    )

    # remove a 2D axis and replace with a 3D projection one
    ax3D.remove()
    ax3D = fig.add_subplot(131, projection="3d")

    # Create the normalizer to normalize the color values
    norm = Normalize(self.get_color(data).min(), self.get_color(data).max())

    # Counters to keep track of the configurations run for only a single fidelity
    n_lines = 0
    n_points = 0

    data_groups = data.groupby("configID", sort=False)

    for idx, (_configID, data_) in enumerate(data_groups):
        x = self.get_x(data_)
        y = self.get_y(data_)
        z = self.get_z(data_)

        y = np.ones_like(y) * idx
        color = self.get_color(data_)

        if len(x) < 2:
            n_points += 1
            if self.scatter:
                # 3D points
                ax3D.scatter(
                    y,
                    z,
                    s=self.scatter_size,
                    zs=0,
                    zdir="x",
                    c=color,
                    cmap="RdYlBu_r",
                    norm=norm,
                    alpha=self.alpha * 0.8,
                )
                # 2D points
                ax.scatter(
                    x,
                    z,
                    s=self.scatter_size,
                    c=color,
                    cmap="RdYlBu_r",
                    norm=norm,
                    alpha=self.alpha * 0.8,
                )
        else:
            n_lines += 1

            # Plot 3D
            # Get segments for all lines
            points3D = np.array([x, y, z]).T.reshape(-1, 1, 3)
            segments3D = np.concatenate([points3D[:-1], points3D[1:]], axis=1)

            # Construct lines from segments
            lc3D = Line3DCollection(
                segments3D,  # type: ignore
                cmap="RdYlBu_r",
                norm=norm,
                alpha=self.alpha,
            )
            lc3D.set_array(color)

            # Draw lines
            ax3D.add_collection3d(lc3D)  # type: ignore

            # Plot 2D
            # Get segments for all lines
            points = np.array([x, z]).T.reshape(-1, 1, 2)
            segments = np.concatenate([points[:-1], points[1:]], axis=1)

            # Construct lines from segments
            lc = LineCollection(
                segments,  # type: ignore
                cmap="RdYlBu_r",
                norm=norm,
                alpha=self.alpha,  # type: ignore
            )
            lc.set_array(color)

            # Draw lines
            ax.add_collection(lc)

    assert self.objective_to_minimize_range is not None
    assert self.epochs_range is not None

    ax3D.axes.set_xlim3d(left=self.epochs_range[0], right=self.epochs_range[1])  # type: ignore
    ax3D.axes.set_ylim3d(bottom=0, top=data_groups.ngroups)  # type: ignore
    ax3D.axes.set_zlim3d(  # type: ignore
        bottom=self.objective_to_minimize_range[0],
        top=self.objective_to_minimize_range[1],
    )  # type: ignore

    ax3D.set_xlabel("Epochs")
    ax3D.set_ylabel("Iteration sampled")
    ax3D.set_zlabel(f"{self.objective_to_minimize_key}")  # type: ignore

    # set view angle
    ax3D.view_init(elev=self.view_angle[0], azim=self.view_angle[1])  # type: ignore

    ax.autoscale_view()
    ax.set_xlabel(self.fidelity_key)
    ax.set_ylabel(f"{self.objective_to_minimize_key}")
    ax.set_facecolor(self.bck_color_2d)
    fig.suptitle("ifBO run")

    if self.footnote:
        fig.text(
            0.01,
            0.02,
            f"Total {n_lines + n_points} configs evaluated; for multiple budgets: "
            f"{n_lines}, for single budget: {n_points}",
            ha="left",
            va="bottom",
            fontsize=10,
        )

    plt.colorbar(
        cm.ScalarMappable(norm=norm, cmap="RdYlBu_r"),
        cax=cax,
        label="Iteration",
        use_gridspec=True,
        alpha=self.alpha,
    )
    fig.tight_layout()

    self.save(save_path, filename)
    plt.close(fig)

prep_df #

prep_df(df: DataFrame | None = None) -> DataFrame

Prepare the dataframe for plotting.

Source code in neps/plot/plot3D.py
def prep_df(self, df: pd.DataFrame | None = None) -> pd.DataFrame:
    """Prepare the dataframe for plotting."""
    df = self.df if df is None else df

    _fid_key = f"config.{self.fidelity_key}"
    self.objective_to_minimize_range = (
        df["objective_to_minimize"].min(),
        df["objective_to_minimize"].max(),
    )  # type: ignore
    self.epochs_range = (df[_fid_key].min(), df[_fid_key].max())  # type: ignore

    split_values = np.array([[*index.split("_")] for index in df.index])
    df[["configID", "epochID"]] = split_values
    df.configID = df.configID.astype(int)
    df.epochID = df.epochID.astype(int)
    if df.epochID.min() == 0:
        df.epochID += 1

    # indices become sampling order
    time_cols = ["time_started", "time_end"]
    return df.sort_values(by=time_cols).reset_index(drop=True)

save #

save(
    save_path: str | Path | None = None,
    filename: str = "freeze_thaw",
) -> None

Save the plot to a file.

Source code in neps/plot/plot3D.py
def save(
    self,
    save_path: str | Path | None = None,
    filename: str = "freeze_thaw",
) -> None:
    """Save the plot to a file."""
    path = save_path if save_path is not None else self.run_path
    assert path is not None

    run_path = Path(path)
    run_path.mkdir(parents=True, exist_ok=True)
    assert run_path.is_dir()
    plot_path = run_path / f"Plot3D_{filename}.png"
    plt.savefig(plot_path, bbox_inches="tight")
    print(f"Saved plot to {plot_path}")  # noqa: T201