Parameters
A module of all the parameters for the search space.
Parameter
module-attribute
#
Parameter: TypeAlias = Float | Integer | Categorical
A type alias for all the parameter types.
A Constant
is not included as it does not change value.
Categorical
dataclass
#
Categorical(
choices: list[float | int | str],
prior: float | int | str | None = None,
prior_confidence: Literal[
"low", "medium", "high"
] = "low",
)
A list of unordered choices for a parameter.
This kind of parameter is used to represent hyperparameters that can take on a
discrete set of unordered values. For example, the optimizer
hyperparameter
in a neural network search space can be a Categorical
with choices like
["adam", "sgd", "rmsprop"]
.
center
class-attribute
instance-attribute
#
The center value of the categorical hyperparameter.
As there is no natural center for a categorical parameter, this is the first value in the choices list.
choices
instance-attribute
#
The list of choices for the categorical hyperparameter.
prior
class-attribute
instance-attribute
#
The default value for the categorical hyperparameter.
Constant
dataclass
#
Constant(value: Any)
A constant value for a parameter.
This kind of parameter is used to represent hyperparameters with values that should not change during optimization.
For example, the batch_size
hyperparameter in a neural network search space
can be a Constant
with a value of 32
.
Float
dataclass
#
Float(
lower: float,
upper: float,
log: bool = False,
prior: float | None = None,
prior_confidence: Literal[
"low", "medium", "high"
] = "low",
is_fidelity: bool = False,
)
A float value for a parameter.
This kind of parameter is used to represent hyperparameters with continuous float values, optionally specifying if it exists on a log scale.
For example, l2_norm
could be a value in (0.1)
, while the learning_rate
hyperparameter in a neural network search space can be a Float
with a range of (0.0001, 0.1)
but on a log scale.
center
class-attribute
instance-attribute
#
The center value of the numerical hyperparameter.
is_fidelity
class-attribute
instance-attribute
#
is_fidelity: bool = False
Whether the hyperparameter is fidelity.
log
class-attribute
instance-attribute
#
log: bool = False
Whether the hyperparameter is in log space.
prior
class-attribute
instance-attribute
#
prior: float | None = None
Prior value for the hyperparameter.
Integer
dataclass
#
Integer(
lower: int,
upper: int,
log: bool = False,
prior: int | None = None,
prior_confidence: Literal[
"low", "medium", "high"
] = "low",
is_fidelity: bool = False,
)
An integer value for a parameter.
This kind of parameter is used to represent hyperparameters with continuous integer values, optionally specifying f it exists on a log scale.
For example, batch_size
could be a value in (32, 128)
, while the num_layers
hyperparameter in a neural network search space can be a Integer
with a range of (1, 1000)
but on a log scale.
center
class-attribute
instance-attribute
#
The center value of the numerical hyperparameter.
is_fidelity
class-attribute
instance-attribute
#
is_fidelity: bool = False
Whether the hyperparameter is fidelity.
log
class-attribute
instance-attribute
#
log: bool = False
Whether the hyperparameter is in log space.
prior
class-attribute
instance-attribute
#
prior: int | None = None
Prior value for the hyperparameter.