Search space
neps.search_spaces.search_space
#
Contains the SearchSpace
class
which is a container for hyperparameters that can be sampled, mutated, and crossed over.
SearchSpace
#
SearchSpace(**hyperparameters: Parameter)
A container for hyperparameters that can be sampled, mutated, and crossed over.
Provides operations for operating on and generating new configurations from the hyperparameters.
Note
The SearchSpace
class is both the definition of the search space and also
a configuration at the same time.
When refering to the SearchSpace
as a configuration, the documentation will
refer to it as a configuration
or config
. Otherwise, it will be referred to
as a search space
.
TODO
This documentation is WIP. If you have any questions, please reach out so we can know better what to document.
PARAMETER | DESCRIPTION |
---|---|
**hyperparameters |
The hyperparameters that define the search space.
TYPE:
|
Source code in neps/search_spaces/search_space.py
add_hyperparameter
#
Add a hyperparameter to the search space.
PARAMETER | DESCRIPTION |
---|---|
name |
The name of the hyperparameter.
TYPE:
|
hp |
The hyperparameter to add.
TYPE:
|
Source code in neps/search_spaces/search_space.py
clone
#
clone(*, _with_tabular: bool = False) -> SearchSpace
Create a copy of the search space.
Source code in neps/search_spaces/search_space.py
compute_prior
#
Compute the prior probability of the search space.
This is better know as the pdf
of the configuraiton in the search space, or a
relative measure of how likely this configuration is under the search space.
PARAMETER | DESCRIPTION |
---|---|
log |
Whether to compute the log of the prior.
TYPE:
|
ignore_fidelity |
Whether to ignore the fidelity parameter when computing the prior.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
The likelihood of the configuration in the search space. |
Source code in neps/search_spaces/search_space.py
crossover
#
crossover(
config2: SearchSpace,
crossover_probability_per_hyperparameter: float = 1.0,
patience: int = 50,
crossover_strategy: str = "simple",
) -> tuple[SearchSpace, SearchSpace]
Crossover this configuration with another.
PARAMETER | DESCRIPTION |
---|---|
config2 |
The other search space to crossover with.
TYPE:
|
crossover_probability_per_hyperparameter |
The probability of crossing over each hyperparameter.
TYPE:
|
patience |
The number of times to try to crossover a valid value for a hyperparameter.
TYPE:
|
crossover_strategy |
The strategy to use for crossover.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
tuple[SearchSpace, SearchSpace]
|
A tuple of the two new configurations. |
Source code in neps/search_spaces/search_space.py
get_normalized_hp_categories
#
get_normalized_hp_categories(
*, ignore_fidelity: bool = False
) -> dict[
Literal["continuous", "categorical", "graphs"],
list[Any],
]
Get the normalized values for each hyperparameter in the configuraiton.
PARAMETER | DESCRIPTION |
---|---|
ignore_fidelity |
Whether to ignore the fidelity parameter when getting the normalized values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[Literal['continuous', 'categorical', 'graphs'], list[Any]]
|
A dictionary of the normalized values for each hyperparameter, separated by type. |
Source code in neps/search_spaces/search_space.py
get_search_space_grid
#
get_search_space_grid(
*,
size_per_numerical_hp: int = 10,
include_endpoints: bool = True
) -> list[SearchSpace]
Get a grid of configurations from the search space.
For NumericalParameter
hyperparameters,
the parameter size_per_numerical_hp=
is used to determine a grid. If there are
any duplicates, e.g. for an
IntegerParameter
, then we will
remove duplicates.
For CategoricalParameter
hyperparameters, we include all the choices in the grid.
For ConstantParameter
hyperparameters,
we include the constant value in the grid.
TODO
Does not support graph parameters currently.
PARAMETER | DESCRIPTION |
---|---|
size_per_numerical_hp |
The size of the grid for each numerical hyperparameter.
TYPE:
|
include_endpoints |
Whether to include the endpoints of the grid.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[SearchSpace]
|
A list of configurations from the search space. |
Source code in neps/search_spaces/search_space.py
get_vectorial_dim
#
Get the vectorial dimension of the search space.
The count of NumericalParameter
are put under the key "continuous"
and the count of
CategoricalParameter
are put under
the key "categorical"
in the return dict.
If there are no numerical or categorical hyperparameters or constant
parameters, then None
is returned.
RETURNS | DESCRIPTION |
---|---|
dict[Literal['continuous', 'categorical'], int] | None
|
The vectorial dimension |
Source code in neps/search_spaces/search_space.py
hp_values
#
Get the values for each hyperparameter in this configuration.
is_equal_value
#
is_equal_value(
other: SearchSpace,
*,
include_fidelity: bool = True,
on_decimal: int = 8
) -> bool
Check if the configuration is equal to another configuration.
Warning
This does NOT check that the entire SearchSpace
is equal (and thus it is
not a dunder method), but only checks the configuration values.
PARAMETER | DESCRIPTION |
---|---|
other |
The other configuration to compare to.
TYPE:
|
include_fidelity |
Whether to include the fidelity parameter in the comparison.
TYPE:
|
on_decimal |
The decimal to round to when comparing float values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
bool
|
Whether the configuration values are equal. |
Source code in neps/search_spaces/search_space.py
load_from
#
load_from(
config: Mapping[str, Any | GraphParameter]
) -> None
Load a configuration from a dictionary, setting all the values.
mutate
#
mutate(
*,
parent: SearchSpace | None = None,
mutation_rate: float = 1.0,
mutation_strategy: Literal["smbo"] = "smbo",
patience: int = 50,
**kwargs: Any
) -> SearchSpace
Mutate the search space.
PARAMETER | DESCRIPTION |
---|---|
parent |
The parent configuration to mutate from.
TYPE:
|
mutation_rate |
The rate at which to mutate the search space.
TYPE:
|
mutation_strategy |
The strategy to use for mutation.
TYPE:
|
patience |
The number of times to try to mutate a valid value for a hyperparameter.
TYPE:
|
**kwargs |
Additional keyword arguments to pass to the mutation strategy.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
SearchSpace
|
The mutated search space. |
Source code in neps/search_spaces/search_space.py
sample
#
sample(
*,
user_priors: bool = False,
patience: int = 1,
ignore_fidelity: bool = True
) -> SearchSpace
Sample a configuration from the search space.
PARAMETER | DESCRIPTION |
---|---|
user_priors |
Whether to use user priors when sampling.
TYPE:
|
patience |
The number of times to try to sample a valid value for a hyperparameter.
TYPE:
|
ignore_fidelity |
Whether to ignore the fidelity parameter when sampling.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
SearchSpace
|
A sampled configuration from the search space. |
Source code in neps/search_spaces/search_space.py
sample_default_configuration
#
sample_default_configuration(
*,
patience: int = 1,
ignore_fidelity: bool = True,
ignore_missing_defaults: bool = False
) -> SearchSpace
Sample the default configuration from the search space.
By default, if there is no default set for a hyperparameter, an error will be
raised. If ignore_missing_defaults=True
, then a sampled value will be used
instead.
PARAMETER | DESCRIPTION |
---|---|
patience |
The number of times to try to sample a valid value for a hyperparameter.
TYPE:
|
ignore_fidelity |
Whether to ignore the fidelity parameter when sampling.
TYPE:
|
ignore_missing_defaults |
Whether to ignore missing defaults when setting the default configuration.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
SearchSpace
|
The default configuration. |
Source code in neps/search_spaces/search_space.py
serialize
#
Serialize the configuration to a dictionary that can be written to disk.
Source code in neps/search_spaces/search_space.py
set_custom_grid_space
#
set_custom_grid_space(
grid_table: Series | DataFrame,
raw_space: SearchSpace | ConfigurationSpace,
) -> None
Set a custom grid space for the search space.
This function is used to set a custom grid space for the pipeline space.
Warning
The type check and the table format requirement is loose and can break certain components.
Note
Only to be used if a custom set of hyperparameters from the search space is to be sampled or used for acquisition functions.
Source code in neps/search_spaces/search_space.py
set_defaults_to_current_values
#
Update the configuration/search space to use the current values as defaults.
Source code in neps/search_spaces/search_space.py
set_hyperparameters_from_dict
#
set_hyperparameters_from_dict(
hyperparameters: Mapping[str, Any],
*,
defaults: bool = True,
values: bool = True,
confidence: str = "low",
delete_previous_defaults: bool = False,
delete_previous_values: bool = False,
overwrite_constants: bool = False
) -> None
Set the hyperparameters from a dictionary of values.
Constant Hyperparameters
ConstantParameter
hyperparameters
have only a single possible value and hence only a single possible default.
If overwrite_constants=
is False
, then it will remain unchanged and
ignore the new value.
If overwrite_constants=
is True
, then the constant hyperparameter will
be updated, requiring both defaults=True
and values=True
to be set.
The arguments delete_previous_defaults
and delete_previous_values
are
ignored for ConstantParameter
.
PARAMETER | DESCRIPTION |
---|---|
hyperparameters |
The dictionary of hyperparameters to set with values. |
defaults |
Whether to set the defaults to these values.
TYPE:
|
values |
Whether to set the value of the hyperparameters to these values.
TYPE:
|
confidence |
The confidence score to use when setting the default.
Only applies if
TYPE:
|
delete_previous_defaults |
Whether to delete the previous defaults.
TYPE:
|
delete_previous_values |
Whether to delete the previous values.
TYPE:
|
overwrite_constants |
Whether to overwrite constant hyperparameters.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the value is invalid for the hyperparameter. |
Source code in neps/search_spaces/search_space.py
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
|
set_to_max_fidelity
#
Set the configuration to the maximum fidelity.
pipeline_space_from_configspace
#
Constructs the Parameter
objects
from a [ConfigurationSpace
][ConfigSpace.configuration_space.ConfigurationSpace].
PARAMETER | DESCRIPTION |
---|---|
configspace |
The configuration space to construct the pipeline space from.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, Parameter]
|
A dictionary where keys are parameter names and values are parameter objects. |
Source code in neps/search_spaces/search_space.py
pipeline_space_from_yaml
#
Reads configuration details from a YAML file or a dictionary and constructs a pipeline space dictionary.
PARAMETER | DESCRIPTION |
---|---|
config |
Path to the YAML file or a dictionary containing |
RETURNS | DESCRIPTION |
---|---|
dict[str, Parameter]
|
dict[str, Parameter]: A dictionary where keys are parameter names and values are parameter objects. |
RAISES | DESCRIPTION |
---|---|
SearchSpaceFromYamlFileError
|
Raised if there are issues with the YAML file's |
Source code in neps/search_spaces/search_space.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|