The arms submodule¶
Contents:
- 
class multibeep.arms.base¶
- Bases: - object- 
get_ident(self)¶
- access to the possibly non-unique name of an arm - Returns: - string – name of the arm 
 - 
posterior(self)¶
- access to the arm’s posterior - Returns: - posterior_class – a (valid) posterior 
 - 
provides_posterior(self)¶
- to query if an arm provides a posterior - Returns: - bool – True if the arm has a posterior, False if not 
 - 
pull(self)¶
- pulls the arm - Returns: - float – recieved reward 
 - 
real_mean(self)¶
- the mean of the underlying distribution - Returns: - float – mean of the underlying distribution, NaN if N/A 
 - 
real_variance(self)¶
- the variance of the underlying distribution - Returns: - float – variance of the underlying distribution, NaN if N/A 
 
- 
- 
class multibeep.arms.bernoulli(float_t p, rng_class rng)¶
- Bases: - multibeep.arms.base- The classic Bernoulli arm. - Provides the ‘default’ posterior using a Beta prior. - Parameters: - p (float) – the p parameter of the Bernoulli distribution
- rng (multibeep.util.rng_class) – a random number generator object
 
- 
class multibeep.arms.data(ndarray data, name, rng_class rng, bootstrap=False)¶
- Bases: - multibeep.arms.base- Parameters: - data (numpy.ndarray (1d)) – The data for this arme. The data is copied at least once, but if the data is not in C order, a second temporary copy is made.
- name (string) – the name associated with this arm
- rng (multibeep.util.rng_class) – a random number generator object
- bootstrap (bool) – If false, the rewards are returned in sequential order starting with the first when the end is reached. If true, an entry is chosen uniformly at random (with replacement) Default is False. 
 
- 
class multibeep.arms.exponential(float_t l, rng_class rng)¶
- Bases: - multibeep.arms.base- An arm with the exponential reward distribution. - Provides a posterior using an inverse-Gamma prior. - Parameters: - l (float) – the lambda parameter of the exponential distribution
- rng (multibeep.util.rng_class) – a random number generator object
 
- 
class multibeep.arms.normal(float_t mean, float_t variance, rng_class rng)¶
- Bases: - multibeep.arms.base- An arm with a normal reward distribution - Provides a Bayesian posterior where the mean and variance are unknown! - Parameters: - mean (float) – the mean of the normal distribution
- variance (float) – the variance of the normal distribution
- rng (multibeep.util.rng_class) – a random number generator object