correlations
class RunningStats()
#
Source code in src/mfpbench/correlations.py
def clear()
#
def push(x)
#
Push a new value into the running stats.
Source code in src/mfpbench/correlations.py
def mean()
#
def variance()
#
def correlation_curve(b, *, n_samples=25, method='spearman')
#
Compute the correlation curve for a benchmark.
PARAMETER | DESCRIPTION |
---|---|
b |
The benchmark to compute the correlation curve for
TYPE:
|
n_samples |
The number of samples to take from the benchmark
TYPE:
|
method |
The method to use for computing the correlation curve
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
The mean correlation curve |
Source code in src/mfpbench/correlations.py
def monte_carlo(benchmark, n_samples=25, epsilon=0.001, iterations_max=5000)
#
Compute the correlation curve use a mc method for convergence.
PARAMETER | DESCRIPTION |
---|---|
benchmark |
The benchmark to compute the correlation curve for
TYPE:
|
n_samples |
The number of samples to take from the benchmark per iteration
TYPE:
|
epsilon |
The convergence threshold
TYPE:
|
iterations_max |
The maximum number of iterations to run
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunningStats
|
RunningStats |