Note
Click here to download the full example code or to run this example in your browser via Binder
Restricting the number of hyperparameters for an existing component¶
The following example demonstrates how to replace an existing component with a new component, implementing the same classifier, but with different hyperparameters .
from typing import Optional
from ConfigSpace.configuration_space import ConfigurationSpace
from ConfigSpace.hyperparameters import (
UniformIntegerHyperparameter,
UniformFloatHyperparameter,
)
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from autosklearn.askl_typing import FEAT_TYPE_TYPE
import autosklearn.classification
import autosklearn.pipeline.components.classification
from autosklearn.pipeline.components.classification import (
AutoSklearnClassificationAlgorithm,
)
from autosklearn.pipeline.constants import DENSE, UNSIGNED_DATA, PREDICTIONS, SPARSE
Subclass auto-sklearn’s random forest classifier¶
# This classifier only has one of the hyperparameter's of auto-sklearn's
# default parametrization (``max_features``). Instead, it also
# tunes the number of estimators (``n_estimators``).
class CustomRandomForest(AutoSklearnClassificationAlgorithm):
def __init__(self, n_estimators, max_features, random_state=None):
self.n_estimators = n_estimators
self.max_features = max_features
self.random_state = random_state
def fit(self, X, y):
from sklearn.ensemble import RandomForestClassifier
self.n_estimators = int(self.n_estimators)
if self.max_features not in ("sqrt", "log2", "auto"):
max_features = int(X.shape[1] ** float(self.max_features))
else:
max_features = self.max_features
self.estimator = RandomForestClassifier(
n_estimators=self.n_estimators,
max_features=max_features,
random_state=self.random_state,
)
self.estimator.fit(X, y)
return self
def predict(self, X):
if self.estimator is None:
raise NotImplementedError()
return self.estimator.predict(X)
def predict_proba(self, X):
if self.estimator is None:
raise NotImplementedError()
return self.estimator.predict_proba(X)
@staticmethod
def get_properties(dataset_properties=None):
return {
"shortname": "RF",
"name": "Random Forest Classifier",
"handles_regression": False,
"handles_classification": True,
"handles_multiclass": True,
"handles_multilabel": True,
"handles_multioutput": False,
"is_deterministic": True,
"input": (DENSE, SPARSE, UNSIGNED_DATA),
"output": (PREDICTIONS,),
}
@staticmethod
def get_hyperparameter_search_space(
feat_type: Optional[FEAT_TYPE_TYPE] = None, dataset_properties=None
):
cs = ConfigurationSpace()
# The maximum number of features used in the forest is calculated as m^max_features, where
# m is the total number of features, and max_features is the hyperparameter specified below.
# The default is 0.5, which yields sqrt(m) features as max_features in the estimator. This
# corresponds with Geurts' heuristic.
max_features = UniformFloatHyperparameter(
"max_features", 0.0, 1.0, default_value=0.5
)
n_estimators = UniformIntegerHyperparameter(
"n_estimators", 10, 1000, default_value=100
)
cs.add_hyperparameters([max_features, n_estimators])
return cs
# Add custom random forest classifier component to auto-sklearn.
autosklearn.pipeline.components.classification.add_classifier(CustomRandomForest)
cs = CustomRandomForest.get_hyperparameter_search_space()
print(cs)
Configuration space object:
Hyperparameters:
max_features, Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5
n_estimators, Type: UniformInteger, Range: [10, 1000], Default: 100
Data Loading¶
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
Fit Random forest classifier to the data¶
clf = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=30,
per_run_time_limit=10,
# Here we exclude auto-sklearn's default random forest component
exclude={"classifier": ["random_forest"]},
# Bellow two flags are provided to speed up calculations
# Not recommended for a real implementation
initial_configurations_via_metalearning=0,
smac_scenario_args={"runcount_limit": 1},
)
clf.fit(X_train, y_train)
AutoSklearnClassifier(ensemble_class=<class 'autosklearn.ensembles.ensemble_selection.EnsembleSelection'>,
exclude={'classifier': ['random_forest']},
initial_configurations_via_metalearning=0,
per_run_time_limit=10,
smac_scenario_args={'runcount_limit': 1},
time_left_for_this_task=30)
Print the configuration space¶
# Observe that this configuration space only contains our custom random
# forest, but not auto-sklearn's ``random_forest``
cs = clf.get_configuration_space(X_train, y_train)
assert "random_forest" not in str(cs)
print(cs)
Configuration space object:
Hyperparameters:
balancing:strategy, Type: Categorical, Choices: {none, weighting}, Default: none
classifier:CustomRandomForest:max_features, Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5
classifier:CustomRandomForest:n_estimators, Type: UniformInteger, Range: [10, 1000], Default: 100
classifier:__choice__, Type: Categorical, Choices: {adaboost, bernoulli_nb, decision_tree, extra_trees, gaussian_nb, gradient_boosting, k_nearest_neighbors, lda, liblinear_svc, libsvm_svc, mlp, multinomial_nb, passive_aggressive, qda, sgd, CustomRandomForest}, Default: liblinear_svc
classifier:adaboost:algorithm, Type: Categorical, Choices: {SAMME.R, SAMME}, Default: SAMME.R
classifier:adaboost:learning_rate, Type: UniformFloat, Range: [0.01, 2.0], Default: 0.1, on log-scale
classifier:adaboost:max_depth, Type: UniformInteger, Range: [1, 10], Default: 1
classifier:adaboost:n_estimators, Type: UniformInteger, Range: [50, 500], Default: 50
classifier:bernoulli_nb:alpha, Type: UniformFloat, Range: [0.01, 100.0], Default: 1.0, on log-scale
classifier:bernoulli_nb:fit_prior, Type: Categorical, Choices: {True, False}, Default: True
classifier:decision_tree:criterion, Type: Categorical, Choices: {gini, entropy}, Default: gini
classifier:decision_tree:max_depth_factor, Type: UniformFloat, Range: [0.0, 2.0], Default: 0.5
classifier:decision_tree:max_features, Type: Constant, Value: 1.0
classifier:decision_tree:max_leaf_nodes, Type: Constant, Value: None
classifier:decision_tree:min_impurity_decrease, Type: Constant, Value: 0.0
classifier:decision_tree:min_samples_leaf, Type: UniformInteger, Range: [1, 20], Default: 1
classifier:decision_tree:min_samples_split, Type: UniformInteger, Range: [2, 20], Default: 2
classifier:decision_tree:min_weight_fraction_leaf, Type: Constant, Value: 0.0
classifier:extra_trees:bootstrap, Type: Categorical, Choices: {True, False}, Default: False
classifier:extra_trees:criterion, Type: Categorical, Choices: {gini, entropy}, Default: gini
classifier:extra_trees:max_depth, Type: Constant, Value: None
classifier:extra_trees:max_features, Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5
classifier:extra_trees:max_leaf_nodes, Type: Constant, Value: None
classifier:extra_trees:min_impurity_decrease, Type: Constant, Value: 0.0
classifier:extra_trees:min_samples_leaf, Type: UniformInteger, Range: [1, 20], Default: 1
classifier:extra_trees:min_samples_split, Type: UniformInteger, Range: [2, 20], Default: 2
classifier:extra_trees:min_weight_fraction_leaf, Type: Constant, Value: 0.0
classifier:gradient_boosting:early_stop, Type: Categorical, Choices: {off, valid, train}, Default: off
classifier:gradient_boosting:l2_regularization, Type: UniformFloat, Range: [1e-10, 1.0], Default: 1e-10, on log-scale
classifier:gradient_boosting:learning_rate, Type: UniformFloat, Range: [0.01, 1.0], Default: 0.1, on log-scale
classifier:gradient_boosting:loss, Type: Constant, Value: auto
classifier:gradient_boosting:max_bins, Type: Constant, Value: 255
classifier:gradient_boosting:max_depth, Type: Constant, Value: None
classifier:gradient_boosting:max_leaf_nodes, Type: UniformInteger, Range: [3, 2047], Default: 31, on log-scale
classifier:gradient_boosting:min_samples_leaf, Type: UniformInteger, Range: [1, 200], Default: 20, on log-scale
classifier:gradient_boosting:n_iter_no_change, Type: UniformInteger, Range: [1, 20], Default: 10
classifier:gradient_boosting:scoring, Type: Constant, Value: loss
classifier:gradient_boosting:tol, Type: Constant, Value: 1e-07
classifier:gradient_boosting:validation_fraction, Type: UniformFloat, Range: [0.01, 0.4], Default: 0.1
classifier:k_nearest_neighbors:n_neighbors, Type: UniformInteger, Range: [1, 100], Default: 1, on log-scale
classifier:k_nearest_neighbors:p, Type: Categorical, Choices: {1, 2}, Default: 2
classifier:k_nearest_neighbors:weights, Type: Categorical, Choices: {uniform, distance}, Default: uniform
classifier:lda:shrinkage, Type: Categorical, Choices: {None, auto, manual}, Default: None
classifier:lda:shrinkage_factor, Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5
classifier:lda:tol, Type: UniformFloat, Range: [1e-05, 0.1], Default: 0.0001, on log-scale
classifier:liblinear_svc:C, Type: UniformFloat, Range: [0.03125, 32768.0], Default: 1.0, on log-scale
classifier:liblinear_svc:dual, Type: Constant, Value: False
classifier:liblinear_svc:fit_intercept, Type: Constant, Value: True
classifier:liblinear_svc:intercept_scaling, Type: Constant, Value: 1
classifier:liblinear_svc:loss, Type: Categorical, Choices: {hinge, squared_hinge}, Default: squared_hinge
classifier:liblinear_svc:multi_class, Type: Constant, Value: ovr
classifier:liblinear_svc:penalty, Type: Categorical, Choices: {l1, l2}, Default: l2
classifier:liblinear_svc:tol, Type: UniformFloat, Range: [1e-05, 0.1], Default: 0.0001, on log-scale
classifier:libsvm_svc:C, Type: UniformFloat, Range: [0.03125, 32768.0], Default: 1.0, on log-scale
classifier:libsvm_svc:coef0, Type: UniformFloat, Range: [-1.0, 1.0], Default: 0.0
classifier:libsvm_svc:degree, Type: UniformInteger, Range: [2, 5], Default: 3
classifier:libsvm_svc:gamma, Type: UniformFloat, Range: [3.0517578125e-05, 8.0], Default: 0.1, on log-scale
classifier:libsvm_svc:kernel, Type: Categorical, Choices: {rbf, poly, sigmoid}, Default: rbf
classifier:libsvm_svc:max_iter, Type: Constant, Value: -1
classifier:libsvm_svc:shrinking, Type: Categorical, Choices: {True, False}, Default: True
classifier:libsvm_svc:tol, Type: UniformFloat, Range: [1e-05, 0.1], Default: 0.001, on log-scale
classifier:mlp:activation, Type: Categorical, Choices: {tanh, relu}, Default: relu
classifier:mlp:alpha, Type: UniformFloat, Range: [1e-07, 0.1], Default: 0.0001, on log-scale
classifier:mlp:batch_size, Type: Constant, Value: auto
classifier:mlp:beta_1, Type: Constant, Value: 0.9
classifier:mlp:beta_2, Type: Constant, Value: 0.999
classifier:mlp:early_stopping, Type: Categorical, Choices: {valid, train}, Default: valid
classifier:mlp:epsilon, Type: Constant, Value: 1e-08
classifier:mlp:hidden_layer_depth, Type: UniformInteger, Range: [1, 3], Default: 1
classifier:mlp:learning_rate_init, Type: UniformFloat, Range: [0.0001, 0.5], Default: 0.001, on log-scale
classifier:mlp:n_iter_no_change, Type: Constant, Value: 32
classifier:mlp:num_nodes_per_layer, Type: UniformInteger, Range: [16, 264], Default: 32, on log-scale
classifier:mlp:shuffle, Type: Constant, Value: True
classifier:mlp:solver, Type: Constant, Value: adam
classifier:mlp:tol, Type: Constant, Value: 0.0001
classifier:mlp:validation_fraction, Type: Constant, Value: 0.1
classifier:multinomial_nb:alpha, Type: UniformFloat, Range: [0.01, 100.0], Default: 1.0, on log-scale
classifier:multinomial_nb:fit_prior, Type: Categorical, Choices: {True, False}, Default: True
classifier:passive_aggressive:C, Type: UniformFloat, Range: [1e-05, 10.0], Default: 1.0, on log-scale
classifier:passive_aggressive:average, Type: Categorical, Choices: {False, True}, Default: False
classifier:passive_aggressive:fit_intercept, Type: Constant, Value: True
classifier:passive_aggressive:loss, Type: Categorical, Choices: {hinge, squared_hinge}, Default: hinge
classifier:passive_aggressive:tol, Type: UniformFloat, Range: [1e-05, 0.1], Default: 0.0001, on log-scale
classifier:qda:reg_param, Type: UniformFloat, Range: [0.0, 1.0], Default: 0.0
classifier:sgd:alpha, Type: UniformFloat, Range: [1e-07, 0.1], Default: 0.0001, on log-scale
classifier:sgd:average, Type: Categorical, Choices: {False, True}, Default: False
classifier:sgd:epsilon, Type: UniformFloat, Range: [1e-05, 0.1], Default: 0.0001, on log-scale
classifier:sgd:eta0, Type: UniformFloat, Range: [1e-07, 0.1], Default: 0.01, on log-scale
classifier:sgd:fit_intercept, Type: Constant, Value: True
classifier:sgd:l1_ratio, Type: UniformFloat, Range: [1e-09, 1.0], Default: 0.15, on log-scale
classifier:sgd:learning_rate, Type: Categorical, Choices: {optimal, invscaling, constant}, Default: invscaling
classifier:sgd:loss, Type: Categorical, Choices: {hinge, log, modified_huber, squared_hinge, perceptron}, Default: log
classifier:sgd:penalty, Type: Categorical, Choices: {l1, l2, elasticnet}, Default: l2
classifier:sgd:power_t, Type: UniformFloat, Range: [1e-05, 1.0], Default: 0.5
classifier:sgd:tol, Type: UniformFloat, Range: [1e-05, 0.1], Default: 0.0001, on log-scale
data_preprocessor:__choice__, Type: Categorical, Choices: {feature_type, NoPreprocessing}, Default: feature_type
data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Type: Categorical, Choices: {mean, median, most_frequent}, Default: mean
data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Type: Categorical, Choices: {minmax, none, normalize, power_transformer, quantile_transformer, robust_scaler, standardize}, Default: standardize
data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles, Type: UniformInteger, Range: [10, 2000], Default: 1000
data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution, Type: Categorical, Choices: {normal, uniform}, Default: normal
data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max, Type: UniformFloat, Range: [0.7, 0.999], Default: 0.75
data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min, Type: UniformFloat, Range: [0.001, 0.3], Default: 0.25
feature_preprocessor:LDA:shrinkage, Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5
feature_preprocessor:LDA:solver, Type: Categorical, Choices: {svd, lsqr, eigen}, Default: svd
feature_preprocessor:LDA:tol, Type: UniformFloat, Range: [0.0001, 1.0], Default: 0.0001
feature_preprocessor:__choice__, Type: Categorical, Choices: {extra_trees_preproc_for_classification, fast_ica, feature_agglomeration, kernel_pca, kitchen_sinks, liblinear_svc_preprocessor, no_preprocessing, nystroem_sampler, pca, polynomial, random_trees_embedding, select_percentile_classification, select_rates_classification, LDA}, Default: no_preprocessing
feature_preprocessor:extra_trees_preproc_for_classification:bootstrap, Type: Categorical, Choices: {True, False}, Default: False
feature_preprocessor:extra_trees_preproc_for_classification:criterion, Type: Categorical, Choices: {gini, entropy}, Default: gini
feature_preprocessor:extra_trees_preproc_for_classification:max_depth, Type: Constant, Value: None
feature_preprocessor:extra_trees_preproc_for_classification:max_features, Type: UniformFloat, Range: [0.0, 1.0], Default: 0.5
feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes, Type: Constant, Value: None
feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease, Type: Constant, Value: 0.0
feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf, Type: UniformInteger, Range: [1, 20], Default: 1
feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split, Type: UniformInteger, Range: [2, 20], Default: 2
feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf, Type: Constant, Value: 0.0
feature_preprocessor:extra_trees_preproc_for_classification:n_estimators, Type: Constant, Value: 100
feature_preprocessor:fast_ica:algorithm, Type: Categorical, Choices: {parallel, deflation}, Default: parallel
feature_preprocessor:fast_ica:fun, Type: Categorical, Choices: {logcosh, exp, cube}, Default: logcosh
feature_preprocessor:fast_ica:n_components, Type: UniformInteger, Range: [10, 2000], Default: 100
feature_preprocessor:fast_ica:whiten, Type: Categorical, Choices: {False, True}, Default: False
feature_preprocessor:feature_agglomeration:affinity, Type: Categorical, Choices: {euclidean, manhattan, cosine}, Default: euclidean
feature_preprocessor:feature_agglomeration:linkage, Type: Categorical, Choices: {ward, complete, average}, Default: ward
feature_preprocessor:feature_agglomeration:n_clusters, Type: UniformInteger, Range: [2, 400], Default: 25
feature_preprocessor:feature_agglomeration:pooling_func, Type: Categorical, Choices: {mean, median, max}, Default: mean
feature_preprocessor:kernel_pca:coef0, Type: UniformFloat, Range: [-1.0, 1.0], Default: 0.0
feature_preprocessor:kernel_pca:degree, Type: UniformInteger, Range: [2, 5], Default: 3
feature_preprocessor:kernel_pca:gamma, Type: UniformFloat, Range: [3.0517578125e-05, 8.0], Default: 0.01, on log-scale
feature_preprocessor:kernel_pca:kernel, Type: Categorical, Choices: {poly, rbf, sigmoid, cosine}, Default: rbf
feature_preprocessor:kernel_pca:n_components, Type: UniformInteger, Range: [10, 2000], Default: 100
feature_preprocessor:kitchen_sinks:gamma, Type: UniformFloat, Range: [3.0517578125e-05, 8.0], Default: 1.0, on log-scale
feature_preprocessor:kitchen_sinks:n_components, Type: UniformInteger, Range: [50, 10000], Default: 100, on log-scale
feature_preprocessor:liblinear_svc_preprocessor:C, Type: UniformFloat, Range: [0.03125, 32768.0], Default: 1.0, on log-scale
feature_preprocessor:liblinear_svc_preprocessor:dual, Type: Constant, Value: False
feature_preprocessor:liblinear_svc_preprocessor:fit_intercept, Type: Constant, Value: True
feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling, Type: Constant, Value: 1
feature_preprocessor:liblinear_svc_preprocessor:loss, Type: Categorical, Choices: {hinge, squared_hinge}, Default: squared_hinge
feature_preprocessor:liblinear_svc_preprocessor:multi_class, Type: Constant, Value: ovr
feature_preprocessor:liblinear_svc_preprocessor:penalty, Type: Constant, Value: l1
feature_preprocessor:liblinear_svc_preprocessor:tol, Type: UniformFloat, Range: [1e-05, 0.1], Default: 0.0001, on log-scale
feature_preprocessor:nystroem_sampler:coef0, Type: UniformFloat, Range: [-1.0, 1.0], Default: 0.0
feature_preprocessor:nystroem_sampler:degree, Type: UniformInteger, Range: [2, 5], Default: 3
feature_preprocessor:nystroem_sampler:gamma, Type: UniformFloat, Range: [3.0517578125e-05, 8.0], Default: 0.1, on log-scale
feature_preprocessor:nystroem_sampler:kernel, Type: Categorical, Choices: {poly, rbf, sigmoid, cosine}, Default: rbf
feature_preprocessor:nystroem_sampler:n_components, Type: UniformInteger, Range: [50, 10000], Default: 100, on log-scale
feature_preprocessor:pca:keep_variance, Type: UniformFloat, Range: [0.5, 0.9999], Default: 0.9999
feature_preprocessor:pca:whiten, Type: Categorical, Choices: {False, True}, Default: False
feature_preprocessor:polynomial:degree, Type: UniformInteger, Range: [2, 3], Default: 2
feature_preprocessor:polynomial:include_bias, Type: Categorical, Choices: {True, False}, Default: True
feature_preprocessor:polynomial:interaction_only, Type: Categorical, Choices: {False, True}, Default: False
feature_preprocessor:random_trees_embedding:bootstrap, Type: Categorical, Choices: {True, False}, Default: True
feature_preprocessor:random_trees_embedding:max_depth, Type: UniformInteger, Range: [2, 10], Default: 5
feature_preprocessor:random_trees_embedding:max_leaf_nodes, Type: Constant, Value: None
feature_preprocessor:random_trees_embedding:min_samples_leaf, Type: UniformInteger, Range: [1, 20], Default: 1
feature_preprocessor:random_trees_embedding:min_samples_split, Type: UniformInteger, Range: [2, 20], Default: 2
feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf, Type: Constant, Value: 1.0
feature_preprocessor:random_trees_embedding:n_estimators, Type: UniformInteger, Range: [10, 100], Default: 10
feature_preprocessor:select_percentile_classification:percentile, Type: UniformFloat, Range: [1.0, 99.0], Default: 50.0
feature_preprocessor:select_percentile_classification:score_func, Type: Categorical, Choices: {chi2, f_classif, mutual_info}, Default: chi2
feature_preprocessor:select_rates_classification:alpha, Type: UniformFloat, Range: [0.01, 0.5], Default: 0.1
feature_preprocessor:select_rates_classification:mode, Type: Categorical, Choices: {fpr, fdr, fwe}, Default: fpr
feature_preprocessor:select_rates_classification:score_func, Type: Categorical, Choices: {chi2, f_classif, mutual_info_classif}, Default: chi2
Conditions:
classifier:CustomRandomForest:max_features | classifier:__choice__ == 'CustomRandomForest'
classifier:CustomRandomForest:n_estimators | classifier:__choice__ == 'CustomRandomForest'
classifier:adaboost:algorithm | classifier:__choice__ == 'adaboost'
classifier:adaboost:learning_rate | classifier:__choice__ == 'adaboost'
classifier:adaboost:max_depth | classifier:__choice__ == 'adaboost'
classifier:adaboost:n_estimators | classifier:__choice__ == 'adaboost'
classifier:bernoulli_nb:alpha | classifier:__choice__ == 'bernoulli_nb'
classifier:bernoulli_nb:fit_prior | classifier:__choice__ == 'bernoulli_nb'
classifier:decision_tree:criterion | classifier:__choice__ == 'decision_tree'
classifier:decision_tree:max_depth_factor | classifier:__choice__ == 'decision_tree'
classifier:decision_tree:max_features | classifier:__choice__ == 'decision_tree'
classifier:decision_tree:max_leaf_nodes | classifier:__choice__ == 'decision_tree'
classifier:decision_tree:min_impurity_decrease | classifier:__choice__ == 'decision_tree'
classifier:decision_tree:min_samples_leaf | classifier:__choice__ == 'decision_tree'
classifier:decision_tree:min_samples_split | classifier:__choice__ == 'decision_tree'
classifier:decision_tree:min_weight_fraction_leaf | classifier:__choice__ == 'decision_tree'
classifier:extra_trees:bootstrap | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:criterion | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:max_depth | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:max_features | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:max_leaf_nodes | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:min_impurity_decrease | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:min_samples_leaf | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:min_samples_split | classifier:__choice__ == 'extra_trees'
classifier:extra_trees:min_weight_fraction_leaf | classifier:__choice__ == 'extra_trees'
classifier:gradient_boosting:early_stop | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:l2_regularization | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:learning_rate | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:loss | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:max_bins | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:max_depth | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:max_leaf_nodes | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:min_samples_leaf | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:n_iter_no_change | classifier:gradient_boosting:early_stop in {'valid', 'train'}
classifier:gradient_boosting:scoring | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:tol | classifier:__choice__ == 'gradient_boosting'
classifier:gradient_boosting:validation_fraction | classifier:gradient_boosting:early_stop == 'valid'
classifier:k_nearest_neighbors:n_neighbors | classifier:__choice__ == 'k_nearest_neighbors'
classifier:k_nearest_neighbors:p | classifier:__choice__ == 'k_nearest_neighbors'
classifier:k_nearest_neighbors:weights | classifier:__choice__ == 'k_nearest_neighbors'
classifier:lda:shrinkage | classifier:__choice__ == 'lda'
classifier:lda:shrinkage_factor | classifier:lda:shrinkage == 'manual'
classifier:lda:tol | classifier:__choice__ == 'lda'
classifier:liblinear_svc:C | classifier:__choice__ == 'liblinear_svc'
classifier:liblinear_svc:dual | classifier:__choice__ == 'liblinear_svc'
classifier:liblinear_svc:fit_intercept | classifier:__choice__ == 'liblinear_svc'
classifier:liblinear_svc:intercept_scaling | classifier:__choice__ == 'liblinear_svc'
classifier:liblinear_svc:loss | classifier:__choice__ == 'liblinear_svc'
classifier:liblinear_svc:multi_class | classifier:__choice__ == 'liblinear_svc'
classifier:liblinear_svc:penalty | classifier:__choice__ == 'liblinear_svc'
classifier:liblinear_svc:tol | classifier:__choice__ == 'liblinear_svc'
classifier:libsvm_svc:C | classifier:__choice__ == 'libsvm_svc'
classifier:libsvm_svc:coef0 | classifier:libsvm_svc:kernel in {'poly', 'sigmoid'}
classifier:libsvm_svc:degree | classifier:libsvm_svc:kernel == 'poly'
classifier:libsvm_svc:gamma | classifier:__choice__ == 'libsvm_svc'
classifier:libsvm_svc:kernel | classifier:__choice__ == 'libsvm_svc'
classifier:libsvm_svc:max_iter | classifier:__choice__ == 'libsvm_svc'
classifier:libsvm_svc:shrinking | classifier:__choice__ == 'libsvm_svc'
classifier:libsvm_svc:tol | classifier:__choice__ == 'libsvm_svc'
classifier:mlp:activation | classifier:__choice__ == 'mlp'
classifier:mlp:alpha | classifier:__choice__ == 'mlp'
classifier:mlp:batch_size | classifier:__choice__ == 'mlp'
classifier:mlp:beta_1 | classifier:__choice__ == 'mlp'
classifier:mlp:beta_2 | classifier:__choice__ == 'mlp'
classifier:mlp:early_stopping | classifier:__choice__ == 'mlp'
classifier:mlp:epsilon | classifier:__choice__ == 'mlp'
classifier:mlp:hidden_layer_depth | classifier:__choice__ == 'mlp'
classifier:mlp:learning_rate_init | classifier:__choice__ == 'mlp'
classifier:mlp:n_iter_no_change | classifier:__choice__ == 'mlp'
classifier:mlp:num_nodes_per_layer | classifier:__choice__ == 'mlp'
classifier:mlp:shuffle | classifier:__choice__ == 'mlp'
classifier:mlp:solver | classifier:__choice__ == 'mlp'
classifier:mlp:tol | classifier:__choice__ == 'mlp'
classifier:mlp:validation_fraction | classifier:mlp:early_stopping in {'valid'}
classifier:multinomial_nb:alpha | classifier:__choice__ == 'multinomial_nb'
classifier:multinomial_nb:fit_prior | classifier:__choice__ == 'multinomial_nb'
classifier:passive_aggressive:C | classifier:__choice__ == 'passive_aggressive'
classifier:passive_aggressive:average | classifier:__choice__ == 'passive_aggressive'
classifier:passive_aggressive:fit_intercept | classifier:__choice__ == 'passive_aggressive'
classifier:passive_aggressive:loss | classifier:__choice__ == 'passive_aggressive'
classifier:passive_aggressive:tol | classifier:__choice__ == 'passive_aggressive'
classifier:qda:reg_param | classifier:__choice__ == 'qda'
classifier:sgd:alpha | classifier:__choice__ == 'sgd'
classifier:sgd:average | classifier:__choice__ == 'sgd'
classifier:sgd:epsilon | classifier:sgd:loss == 'modified_huber'
classifier:sgd:eta0 | classifier:sgd:learning_rate in {'invscaling', 'constant'}
classifier:sgd:fit_intercept | classifier:__choice__ == 'sgd'
classifier:sgd:l1_ratio | classifier:sgd:penalty == 'elasticnet'
classifier:sgd:learning_rate | classifier:__choice__ == 'sgd'
classifier:sgd:loss | classifier:__choice__ == 'sgd'
classifier:sgd:penalty | classifier:__choice__ == 'sgd'
classifier:sgd:power_t | classifier:sgd:learning_rate == 'invscaling'
classifier:sgd:tol | classifier:__choice__ == 'sgd'
data_preprocessor:feature_type:numerical_transformer:imputation:strategy | data_preprocessor:__choice__ == 'feature_type'
data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__ | data_preprocessor:__choice__ == 'feature_type'
data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles | data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__ == 'quantile_transformer'
data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution | data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__ == 'quantile_transformer'
data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max | data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__ == 'robust_scaler'
data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min | data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__ == 'robust_scaler'
feature_preprocessor:LDA:shrinkage | feature_preprocessor:LDA:solver in {'lsqr', 'eigen'}
feature_preprocessor:LDA:solver | feature_preprocessor:__choice__ == 'LDA'
feature_preprocessor:LDA:tol | feature_preprocessor:__choice__ == 'LDA'
feature_preprocessor:extra_trees_preproc_for_classification:bootstrap | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:criterion | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:max_depth | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:max_features | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:extra_trees_preproc_for_classification:n_estimators | feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification'
feature_preprocessor:fast_ica:algorithm | feature_preprocessor:__choice__ == 'fast_ica'
feature_preprocessor:fast_ica:fun | feature_preprocessor:__choice__ == 'fast_ica'
feature_preprocessor:fast_ica:n_components | feature_preprocessor:fast_ica:whiten == 'True'
feature_preprocessor:fast_ica:whiten | feature_preprocessor:__choice__ == 'fast_ica'
feature_preprocessor:feature_agglomeration:affinity | feature_preprocessor:__choice__ == 'feature_agglomeration'
feature_preprocessor:feature_agglomeration:linkage | feature_preprocessor:__choice__ == 'feature_agglomeration'
feature_preprocessor:feature_agglomeration:n_clusters | feature_preprocessor:__choice__ == 'feature_agglomeration'
feature_preprocessor:feature_agglomeration:pooling_func | feature_preprocessor:__choice__ == 'feature_agglomeration'
feature_preprocessor:kernel_pca:coef0 | feature_preprocessor:kernel_pca:kernel in {'poly', 'sigmoid'}
feature_preprocessor:kernel_pca:degree | feature_preprocessor:kernel_pca:kernel == 'poly'
feature_preprocessor:kernel_pca:gamma | feature_preprocessor:kernel_pca:kernel in {'poly', 'rbf'}
feature_preprocessor:kernel_pca:kernel | feature_preprocessor:__choice__ == 'kernel_pca'
feature_preprocessor:kernel_pca:n_components | feature_preprocessor:__choice__ == 'kernel_pca'
feature_preprocessor:kitchen_sinks:gamma | feature_preprocessor:__choice__ == 'kitchen_sinks'
feature_preprocessor:kitchen_sinks:n_components | feature_preprocessor:__choice__ == 'kitchen_sinks'
feature_preprocessor:liblinear_svc_preprocessor:C | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:liblinear_svc_preprocessor:dual | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:liblinear_svc_preprocessor:fit_intercept | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:liblinear_svc_preprocessor:loss | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:liblinear_svc_preprocessor:multi_class | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:liblinear_svc_preprocessor:penalty | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:liblinear_svc_preprocessor:tol | feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor'
feature_preprocessor:nystroem_sampler:coef0 | feature_preprocessor:nystroem_sampler:kernel in {'poly', 'sigmoid'}
feature_preprocessor:nystroem_sampler:degree | feature_preprocessor:nystroem_sampler:kernel == 'poly'
feature_preprocessor:nystroem_sampler:gamma | feature_preprocessor:nystroem_sampler:kernel in {'poly', 'rbf', 'sigmoid'}
feature_preprocessor:nystroem_sampler:kernel | feature_preprocessor:__choice__ == 'nystroem_sampler'
feature_preprocessor:nystroem_sampler:n_components | feature_preprocessor:__choice__ == 'nystroem_sampler'
feature_preprocessor:pca:keep_variance | feature_preprocessor:__choice__ == 'pca'
feature_preprocessor:pca:whiten | feature_preprocessor:__choice__ == 'pca'
feature_preprocessor:polynomial:degree | feature_preprocessor:__choice__ == 'polynomial'
feature_preprocessor:polynomial:include_bias | feature_preprocessor:__choice__ == 'polynomial'
feature_preprocessor:polynomial:interaction_only | feature_preprocessor:__choice__ == 'polynomial'
feature_preprocessor:random_trees_embedding:bootstrap | feature_preprocessor:__choice__ == 'random_trees_embedding'
feature_preprocessor:random_trees_embedding:max_depth | feature_preprocessor:__choice__ == 'random_trees_embedding'
feature_preprocessor:random_trees_embedding:max_leaf_nodes | feature_preprocessor:__choice__ == 'random_trees_embedding'
feature_preprocessor:random_trees_embedding:min_samples_leaf | feature_preprocessor:__choice__ == 'random_trees_embedding'
feature_preprocessor:random_trees_embedding:min_samples_split | feature_preprocessor:__choice__ == 'random_trees_embedding'
feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf | feature_preprocessor:__choice__ == 'random_trees_embedding'
feature_preprocessor:random_trees_embedding:n_estimators | feature_preprocessor:__choice__ == 'random_trees_embedding'
feature_preprocessor:select_percentile_classification:percentile | feature_preprocessor:__choice__ == 'select_percentile_classification'
feature_preprocessor:select_percentile_classification:score_func | feature_preprocessor:__choice__ == 'select_percentile_classification'
feature_preprocessor:select_rates_classification:alpha | feature_preprocessor:__choice__ == 'select_rates_classification'
feature_preprocessor:select_rates_classification:mode | feature_preprocessor:select_rates_classification:score_func != 'mutual_info_classif'
feature_preprocessor:select_rates_classification:score_func | feature_preprocessor:__choice__ == 'select_rates_classification'
Forbidden Clauses:
(Forbidden: feature_preprocessor:feature_agglomeration:affinity in {'cosine', 'manhattan'} && Forbidden: feature_preprocessor:feature_agglomeration:linkage == 'ward')
(Forbidden: feature_preprocessor:liblinear_svc_preprocessor:penalty == 'l1' && Forbidden: feature_preprocessor:liblinear_svc_preprocessor:loss == 'hinge')
(Forbidden: classifier:liblinear_svc:penalty == 'l1' && Forbidden: classifier:liblinear_svc:loss == 'hinge')
(Forbidden: classifier:liblinear_svc:dual == 'False' && Forbidden: classifier:liblinear_svc:penalty == 'l2' && Forbidden: classifier:liblinear_svc:loss == 'hinge')
(Forbidden: classifier:liblinear_svc:dual == 'False' && Forbidden: classifier:liblinear_svc:penalty == 'l1')
(Forbidden: feature_preprocessor:__choice__ == 'extra_trees_preproc_for_classification' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'fast_ica' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'feature_agglomeration' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'kernel_pca' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'liblinear_svc_preprocessor' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'no_preprocessing' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'pca' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'polynomial' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'random_trees_embedding' && Forbidden: classifier:__choice__ == 'gaussian_nb')
(Forbidden: feature_preprocessor:__choice__ == 'random_trees_embedding' && Forbidden: classifier:__choice__ == 'gradient_boosting')
(Forbidden: feature_preprocessor:__choice__ == 'random_trees_embedding' && Forbidden: classifier:__choice__ == 'lda')
(Forbidden: feature_preprocessor:__choice__ == 'random_trees_embedding' && Forbidden: classifier:__choice__ == 'qda')
(Forbidden: feature_preprocessor:__choice__ == 'select_percentile_classification' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'select_rates_classification' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: classifier:__choice__ == 'adaboost' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'adaboost' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'adaboost' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: classifier:__choice__ == 'decision_tree' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'decision_tree' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'decision_tree' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: classifier:__choice__ == 'extra_trees' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'extra_trees' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'extra_trees' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: classifier:__choice__ == 'gradient_boosting' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'gradient_boosting' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'gradient_boosting' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: classifier:__choice__ == 'k_nearest_neighbors' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'k_nearest_neighbors' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'k_nearest_neighbors' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: classifier:__choice__ == 'libsvm_svc' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'libsvm_svc' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'libsvm_svc' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: classifier:__choice__ == 'mlp' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'mlp' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'mlp' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: classifier:__choice__ == 'gaussian_nb' && Forbidden: feature_preprocessor:__choice__ == 'kernel_pca')
(Forbidden: classifier:__choice__ == 'gaussian_nb' && Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks')
(Forbidden: classifier:__choice__ == 'gaussian_nb' && Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler')
(Forbidden: feature_preprocessor:__choice__ == 'kitchen_sinks' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'pca' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'fast_ica' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'kernel_pca' && Forbidden: classifier:__choice__ == 'multinomial_nb')
(Forbidden: feature_preprocessor:__choice__ == 'nystroem_sampler' && Forbidden: classifier:__choice__ == 'multinomial_nb')
Total running time of the script: ( 0 minutes 9.951 seconds)