Note
Click here to download the full example code or to run this example in your browser via Binder
Extending Auto-Sklearn with Data Preprocessor Component¶
The following example demonstrates how to turn off data preprocessing step in auto-skearn.
from typing import Optional
from pprint import pprint
import autosklearn.classification
import autosklearn.pipeline.components.data_preprocessing
import sklearn.metrics
from ConfigSpace.configuration_space import ConfigurationSpace
from autosklearn.askl_typing import FEAT_TYPE_TYPE
from autosklearn.pipeline.components.base import AutoSklearnPreprocessingAlgorithm
from autosklearn.pipeline.constants import SPARSE, DENSE, UNSIGNED_DATA, INPUT
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
Create NoPreprocessing component for auto-sklearn¶
class NoPreprocessing(AutoSklearnPreprocessingAlgorithm):
def __init__(self, **kwargs):
"""This preprocessors does not change the data"""
# Some internal checks makes sure parameters are set
for key, val in kwargs.items():
setattr(self, key, val)
def fit(self, X, Y=None):
return self
def transform(self, X):
return X
@staticmethod
def get_properties(dataset_properties=None):
return {
"shortname": "NoPreprocessing",
"name": "NoPreprocessing",
"handles_regression": True,
"handles_classification": True,
"handles_multiclass": True,
"handles_multilabel": True,
"handles_multioutput": True,
"is_deterministic": True,
"input": (SPARSE, DENSE, UNSIGNED_DATA),
"output": (INPUT,),
}
@staticmethod
def get_hyperparameter_search_space(
feat_type: Optional[FEAT_TYPE_TYPE] = None, dataset_properties=None
):
return ConfigurationSpace() # Return an empty configuration as there is None
# Add NoPreprocessing component to auto-sklearn.
autosklearn.pipeline.components.data_preprocessing.add_preprocessor(NoPreprocessing)
Create dataset¶
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
Fit the model without performing data preprocessing¶
clf = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=120,
include={"data_preprocessor": ["NoPreprocessing"]},
# Bellow two flags are provided to speed up calculations
# Not recommended for a real implementation
initial_configurations_via_metalearning=0,
smac_scenario_args={"runcount_limit": 5},
)
clf.fit(X_train, y_train)
# To check that models were found without issue when running examples
assert len(clf.get_models_with_weights()) > 0
print(clf.sprint_statistics())
auto-sklearn results:
Dataset name: 0f572a45-38c5-11ed-8830-892d16569fbe
Metric: accuracy
Best validation score: 0.950355
Number of target algorithm runs: 5
Number of successful target algorithm runs: 5
Number of crashed target algorithm runs: 0
Number of target algorithms that exceeded the time limit: 0
Number of target algorithms that exceeded the memory limit: 0
Print prediction score and statistics¶
y_pred = clf.predict(X_test)
print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test))
pprint(clf.show_models(), indent=4)
accuracy: 0.972027972027972
{ 2: { 'balancing': Balancing(random_state=1),
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f05cb269400>,
'cost': 0.049645390070921946,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f05cb269220>,
'ensemble_weight': 0.38,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f05cb269130>,
'model_id': 2,
'rank': 1,
'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=512, n_jobs=1,
random_state=1, warm_start=True)},
3: { 'balancing': Balancing(random_state=1),
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f05ce642040>,
'cost': 0.11347517730496459,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f05ce642400>,
'ensemble_weight': 0.02,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f05ce642370>,
'model_id': 3,
'rank': 2,
'sklearn_classifier': AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=9),
learning_rate=1.077525751047041, n_estimators=208,
random_state=1)},
4: { 'balancing': Balancing(random_state=1, strategy='weighting'),
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f05d462ee20>,
'cost': 0.375886524822695,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f05d45afa30>,
'ensemble_weight': 0.46,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f05d462e9d0>,
'model_id': 4,
'rank': 3,
'sklearn_classifier': PassiveAggressiveClassifier(C=7.328568999403367e-05, max_iter=16,
random_state=1, tol=0.02258105767523384,
warm_start=True)},
5: { 'balancing': Balancing(random_state=1),
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f05d6854100>,
'cost': 0.375886524822695,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f05d462e670>,
'ensemble_weight': 0.02,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f05d462edc0>,
'model_id': 5,
'rank': 4,
'sklearn_classifier': SVC(C=5.6217653025966605, cache_size=1806.2005208333333,
coef0=-0.011192631375838147, degree=5, gamma=0.00016239358614064282,
kernel='poly', max_iter=-1.0, random_state=1, tol=0.0001346237047084913)},
6: { 'balancing': Balancing(random_state=1),
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f05ca916610>,
'cost': 0.12765957446808507,
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f05d6854040>,
'ensemble_weight': 0.12,
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f05d6854910>,
'model_id': 6,
'rank': 5,
'sklearn_classifier': LinearDiscriminantAnalysis(shrinkage='auto', solver='lsqr',
tol=0.00010495766342828794)}}
Total running time of the script: ( 0 minutes 19.979 seconds)