Note
Click here to download the full example code or to run this example in your browser via Binder
Extending Auto-Sklearn with Classification Component¶
The following example demonstrates how to create a new classification component for using in auto-sklearn.
from typing import Optional
from pprint import pprint
from ConfigSpace.configuration_space import ConfigurationSpace
from ConfigSpace.hyperparameters import (
    CategoricalHyperparameter,
    UniformIntegerHyperparameter,
    UniformFloatHyperparameter,
)
import sklearn.metrics
from autosklearn.askl_typing import FEAT_TYPE_TYPE
import autosklearn.classification
import autosklearn.pipeline.components.classification
from autosklearn.pipeline.components.base import AutoSklearnClassificationAlgorithm
from autosklearn.pipeline.constants import (
    DENSE,
    SIGNED_DATA,
    UNSIGNED_DATA,
    PREDICTIONS,
)
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
Create MLP classifier component for auto-sklearn¶
class MLPClassifier(AutoSklearnClassificationAlgorithm):
    def __init__(
        self,
        hidden_layer_depth,
        num_nodes_per_layer,
        activation,
        alpha,
        solver,
        random_state=None,
    ):
        self.hidden_layer_depth = hidden_layer_depth
        self.num_nodes_per_layer = num_nodes_per_layer
        self.activation = activation
        self.alpha = alpha
        self.solver = solver
        self.random_state = random_state
    def fit(self, X, y):
        self.num_nodes_per_layer = int(self.num_nodes_per_layer)
        self.hidden_layer_depth = int(self.hidden_layer_depth)
        self.alpha = float(self.alpha)
        from sklearn.neural_network import MLPClassifier
        hidden_layer_sizes = tuple(
            self.num_nodes_per_layer for i in range(self.hidden_layer_depth)
        )
        self.estimator = MLPClassifier(
            hidden_layer_sizes=hidden_layer_sizes,
            activation=self.activation,
            alpha=self.alpha,
            solver=self.solver,
            random_state=self.random_state,
        )
        self.estimator.fit(X, y)
        return self
    def predict(self, X):
        if self.estimator is None:
            raise NotImplementedError()
        return self.estimator.predict(X)
    def predict_proba(self, X):
        if self.estimator is None:
            raise NotImplementedError()
        return self.estimator.predict_proba(X)
    @staticmethod
    def get_properties(dataset_properties=None):
        return {
            "shortname": "MLP Classifier",
            "name": "MLP CLassifier",
            "handles_regression": False,
            "handles_classification": True,
            "handles_multiclass": True,
            "handles_multilabel": False,
            "handles_multioutput": False,
            "is_deterministic": False,
            # Both input and output must be tuple(iterable)
            "input": [DENSE, SIGNED_DATA, UNSIGNED_DATA],
            "output": [PREDICTIONS],
        }
    @staticmethod
    def get_hyperparameter_search_space(
        feat_type: Optional[FEAT_TYPE_TYPE] = None, dataset_properties=None
    ):
        cs = ConfigurationSpace()
        hidden_layer_depth = UniformIntegerHyperparameter(
            name="hidden_layer_depth", lower=1, upper=3, default_value=1
        )
        num_nodes_per_layer = UniformIntegerHyperparameter(
            name="num_nodes_per_layer", lower=16, upper=216, default_value=32
        )
        activation = CategoricalHyperparameter(
            name="activation",
            choices=["identity", "logistic", "tanh", "relu"],
            default_value="relu",
        )
        alpha = UniformFloatHyperparameter(
            name="alpha", lower=0.0001, upper=1.0, default_value=0.0001
        )
        solver = CategoricalHyperparameter(
            name="solver", choices=["lbfgs", "sgd", "adam"], default_value="adam"
        )
        cs.add_hyperparameters(
            [
                hidden_layer_depth,
                num_nodes_per_layer,
                activation,
                alpha,
                solver,
            ]
        )
        return cs
# Add MLP classifier component to auto-sklearn.
autosklearn.pipeline.components.classification.add_classifier(MLPClassifier)
cs = MLPClassifier.get_hyperparameter_search_space()
print(cs)
Configuration space object:
  Hyperparameters:
    activation, Type: Categorical, Choices: {identity, logistic, tanh, relu}, Default: relu
    alpha, Type: UniformFloat, Range: [0.0001, 1.0], Default: 0.0001
    hidden_layer_depth, Type: UniformInteger, Range: [1, 3], Default: 1
    num_nodes_per_layer, Type: UniformInteger, Range: [16, 216], Default: 32
    solver, Type: Categorical, Choices: {lbfgs, sgd, adam}, Default: adam
Data Loading¶
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
Fit MLP classifier to the data¶
clf = autosklearn.classification.AutoSklearnClassifier(
    time_left_for_this_task=30,
    per_run_time_limit=10,
    include={"classifier": ["MLPClassifier"]},
    # Bellow two flags are provided to speed up calculations
    # Not recommended for a real implementation
    initial_configurations_via_metalearning=0,
    smac_scenario_args={"runcount_limit": 5},
)
clf.fit(X_train, y_train)
Fitting to the training data:   0%|          | 0/30 [00:00<?, ?it/s, The total time budget for this task is 0:00:30]
Fitting to the training data:   3%|3         | 1/30 [00:01<00:29,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:   7%|6         | 2/30 [00:02<00:28,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  10%|#         | 3/30 [00:03<00:27,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  13%|#3        | 4/30 [00:04<00:26,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  17%|#6        | 5/30 [00:05<00:25,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  20%|##        | 6/30 [00:06<00:24,  1.01s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  23%|##3       | 7/30 [00:07<00:23,  1.01s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  27%|##6       | 8/30 [00:08<00:22,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  30%|###       | 9/30 [00:09<00:21,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  33%|###3      | 10/30 [00:10<00:20,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  37%|###6      | 11/30 [00:11<00:19,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data:  40%|####      | 12/30 [00:12<00:18,  1.00s/it, The total time budget for this task is 0:00:30]
Fitting to the training data: 100%|##########| 30/30 [00:12<00:00,  2.49it/s, The total time budget for this task is 0:00:30]
AutoSklearnClassifier(ensemble_class=<class 'autosklearn.ensembles.ensemble_selection.EnsembleSelection'>,
                      include={'classifier': ['MLPClassifier']},
                      initial_configurations_via_metalearning=0,
                      per_run_time_limit=10,
                      smac_scenario_args={'runcount_limit': 5},
                      time_left_for_this_task=30)
Print test accuracy and statistics¶
y_pred = clf.predict(X_test)
print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test))
pprint(clf.show_models(), indent=4)
accuracy:  0.958041958041958
{   2: {   'balancing': Balancing(random_state=1),
           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f2afd3c2520>,
           'cost': 0.028368794326241176,
           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f2af4c7f0a0>,
           'ensemble_weight': 0.32,
           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f2afd3c2f70>,
           'model_id': 2,
           'rank': 2,
           'sklearn_classifier': MLPClassifier(hidden_layer_sizes=(32,), random_state=1)},
    3: {   'balancing': Balancing(random_state=1, strategy='weighting'),
           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f2af50ed6d0>,
           'cost': 0.021276595744680882,
           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f2af518bfa0>,
           'ensemble_weight': 0.34,
           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f2af50ed7f0>,
           'model_id': 3,
           'rank': 1,
           'sklearn_classifier': MLPClassifier(activation='identity', alpha=0.2945332422116951,
              hidden_layer_sizes=(54,), random_state=1, solver='lbfgs')},
    5: {   'balancing': Balancing(random_state=1),
           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f2af72353d0>,
           'cost': 0.36879432624113473,
           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f2af518b790>,
           'ensemble_weight': 0.34,
           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f2af7235a60>,
           'model_id': 5,
           'rank': 3,
           'sklearn_classifier': MLPClassifier(alpha=0.311408649459819, hidden_layer_sizes=(123, 123, 123),
              random_state=1, solver='sgd')}}
Total running time of the script: ( 0 minutes 17.672 seconds)