Source code for autosklearn.pipeline.components.regression
from typing import Type
import os
from collections import OrderedDict
from ConfigSpace.configuration_space import ConfigurationSpace
from ConfigSpace.hyperparameters import CategoricalHyperparameter
from autosklearn.askl_typing import FEAT_TYPE_TYPE
from ..base import (
    AutoSklearnChoice,
    AutoSklearnRegressionAlgorithm,
    ThirdPartyComponents,
    _addons,
    find_components,
)
regressor_directory = os.path.split(__file__)[0]
_regressors = find_components(
    __package__, regressor_directory, AutoSklearnRegressionAlgorithm
)
additional_components = ThirdPartyComponents(AutoSklearnRegressionAlgorithm)
_addons["regression"] = additional_components
[docs]def add_regressor(regressor: Type[AutoSklearnRegressionAlgorithm]) -> None:
    additional_components.add_component(regressor) 
class RegressorChoice(AutoSklearnChoice):
    @classmethod
    def get_components(cls):
        components = OrderedDict()
        components.update(_regressors)
        components.update(additional_components.components)
        return components
    @classmethod
    def get_available_components(
        cls, dataset_properties=None, include=None, exclude=None
    ):
        available_comp = cls.get_components()
        components_dict = OrderedDict()
        if dataset_properties is None:
            dataset_properties = {}
        if include is not None and exclude is not None:
            raise ValueError(
                "The argument include and exclude cannot be used together."
            )
        if include is not None:
            for incl in include:
                if incl not in available_comp:
                    raise ValueError(
                        "Trying to include unknown component: " "%s" % incl
                    )
        for name in available_comp:
            if include is not None and name not in include:
                continue
            elif exclude is not None and name in exclude:
                continue
            entry = available_comp[name]
            # Avoid infinite loop
            if entry == RegressorChoice:
                continue
            if entry.get_properties()["handles_regression"] is False:
                continue
            if (
                dataset_properties.get("multioutput") is True
                and entry.get_properties()["handles_multioutput"] is False
            ):
                continue
            components_dict[name] = entry
        return components_dict
    def get_hyperparameter_search_space(
        self,
        feat_type: FEAT_TYPE_TYPE,
        dataset_properties=None,
        default=None,
        include=None,
        exclude=None,
    ):
        if include is not None and exclude is not None:
            raise ValueError(
                "The argument include and exclude cannot be used together."
            )
        cs = ConfigurationSpace()
        # Compile a list of all estimator objects for this problem
        available_estimators = self.get_available_components(
            dataset_properties=dataset_properties, include=include, exclude=exclude
        )
        if len(available_estimators) == 0:
            raise ValueError("No regressors found")
        if default is None:
            defaults = ["random_forest", "support_vector_regression"] + list(
                available_estimators.keys()
            )
            for default_ in defaults:
                if default_ in available_estimators:
                    if include is not None and default_ not in include:
                        continue
                    if exclude is not None and default_ in exclude:
                        continue
                    default = default_
                    break
        estimator = CategoricalHyperparameter(
            "__choice__", list(available_estimators.keys()), default_value=default
        )
        cs.add_hyperparameter(estimator)
        for estimator_name in available_estimators.keys():
            estimator_configuration_space = available_estimators[
                estimator_name
            ].get_hyperparameter_search_space(
                feat_type=feat_type, dataset_properties=dataset_properties
            )
            parent_hyperparameter = {"parent": estimator, "value": estimator_name}
            cs.add_configuration_space(
                estimator_name,
                estimator_configuration_space,
                parent_hyperparameter=parent_hyperparameter,
            )
        return cs
    def estimator_supports_iterative_fit(self):
        return hasattr(self.choice, "iterative_fit")
    def get_max_iter(self):
        if self.estimator_supports_iterative_fit():
            return self.choice.get_max_iter()
        else:
            raise NotImplementedError()
    def get_current_iter(self):
        if self.estimator_supports_iterative_fit():
            return self.choice.get_current_iter()
        else:
            raise NotImplementedError()
    def iterative_fit(self, X, y, n_iter=1, **fit_params):
        # Allows to use check_is_fitted on the choice object
        self.fitted_ = True
        if fit_params is None:
            fit_params = {}
        return self.choice.iterative_fit(X, y, n_iter=n_iter, **fit_params)
    def configuration_fully_fitted(self):
        return self.choice.configuration_fully_fitted()